Math 151

Solutions to selected homework problems

Matrices, Problem 8:

Show that the product of two upper triangular matrices is upper triangular.

Solution:

Let A and B be $n \times n$ upper triangular matrices, and let $C=A B$. We want to show that C is upper triangular, i.e. that if $i>j$, then $c_{i j}=0$. We will prove this by contrapositive, i.e. we will prove that if $c_{i j} \neq 0$, then $i \leq j$.

Assume $c_{i j} \neq 0$. Since $c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j}$, there exists k such that $a_{i k} b_{k j} \neq 0$. It follows that $a_{i k} \neq 0$ and $b_{k j} \neq 0$. Since A and B are upper triangular, $i \leq k$ and $k \leq j$. Therefore $i \leq j$.

Section 3.1, Problem 1:

Using ordinary addition of integers as the operation, show that the set of even integers is a group, but the set of odd integers is not.

Solution:

Let us first consider the set of even integers. The ordinary addition is indeed a binary operation on this set since the sum of two even integers is even. It is associative because, as we know, addition of any integers is associative. The number 0 is even, and is the additive identity. Finally, the additive inverse of any even integer is even, so is contained in the set. Thus we have a group.

For the set of odd integers, the ordinary addition is not a binary operation, becase the sum of two odd integers is even (and not odd). Therefore it is not a group.

Section 3.1, Problem 2(bf):

For each binary operation $*$ defined on a set below, determine whether or not $*$ gives a group structure on the set. If it is not a group, say which axioms fail to hold.
(b) Define $*$ on \mathbb{Z} by $a * b=\max \{a, b\}$.

Solution:

This is a binary operation since the maximum of two integers is an integer.

Associativity holds: $\max \{\max \{a, b\}, c\}=\max \{a, b, c\}=\max \{a, \max \{b, c\}\}$.
However, there is no identity element. We will prove this by contradiction. Suppose there is an identity element $e \in \mathbb{Z}$, so for any $a \in \mathbb{Z}, \max \{a, e\}=a$. Consider $a=e-1$. Then $\max \{a, e\}=\max \{e-1, e\}=e \neq a$. We have a contradiction.
Since there is no identity, it does not make sense to talk about the inverse.
So this is not a group.
(f) Define $*$ on \mathbb{Q} by $a * b=a b$.

Solution:

This is a binary operation since the product of two rational numbers is rational.
Associativity holds, since, as we know, multiplication of any real numbers is associative.
There is an identity element, namely, 1 : for any rational number $a, a \cdot 1=1 \cdot a=a$.
However, 0 does not have an inverse: there is no rational number a such that $a \cdot 0=1$.
So this is not a group.

Section 3.1, Problem 10:

Show that the set $A=\left\{f_{m, b}: \mathbb{R} \rightarrow \mathbb{R} \mid m \neq 0\right.$ and $\left.f_{m, b}(x)=m x+b\right\}$ of affine functions from \mathbb{R} to \mathbb{R} forms a group under composition of functions.

Solution:

First we will show that composition is a binary operation on this set: let $f_{m, b}(x)=m x+b$ and $f_{n, c}(x)=n x+c$, where $m \neq 0, n \neq 0$. then $f_{m, b} \circ f_{n, c}(x)=f_{m, b}(n x+c)=$ $m(n x+c)+b=(m n) x+(m c+b)$. Since $m n \neq 0, f_{m, b} \circ f_{n, c} \in A$.

Associativity holds, since, as we know, composition of any functions is associative.
There is an identity element, namely, $f_{1,0}\left(f_{1,0}(x)=x\right)$: it is easy to check that for any $f_{m, b}, f_{m, b} \circ f_{1,0}=f_{1,0} \circ f_{m, b}=f_{m, b}$.
Finally, for any $f_{m, b}$, the function $f_{\frac{1}{m},-\frac{b}{m}}$ is its inverse:
$f_{\frac{1}{m},-\frac{b}{m}} \circ f_{m, b}(x)=f_{\frac{1}{m},-\frac{b}{m}}(m x+b)=\frac{1}{m}(m x+b)-\frac{b}{m}=x$, and similarly it can be checked that $f_{m, b} \circ f_{\frac{1}{m},-\frac{b}{m}}(x)=x$.

