Math 151

Solutions to selected homework problems

Section 3.2, Problem 8(ab):

Let $G=G L_{2}(\mathbb{R})$. For each of the following subsets of $M_{2}(\mathbb{R})$, determine whether or not the subset is a subgroup of G.
(a) $A=\left\{\left.\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right] \right\rvert\, a b \neq 0\right\}$
(b) $B=\left\{\left.\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right] \right\rvert\, b c \neq 0\right\}$

Solution:

(a) Explanation 1:

A matrix of the form $\left[\begin{array}{ll}a & b \\ 0 & 0\end{array}\right]$ has determinant 0 , therefore it is not invertible, and is not in the set $G L_{2}(\mathbb{R})$. So the set A is not a subset of $G L_{2}(\mathbb{R})$. Thus it is not a subgroup. Explanation 2:

The set A does not contain the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, therefore it is not a subgroup.
(b) Explanation 1:

Since $\left[\begin{array}{ll}0 & b \\ c & 0\end{array}\right]\left[\begin{array}{ll}0 & d \\ e & 0\end{array}\right]=\left[\begin{array}{cc}b e & 0 \\ 0 c d & \end{array}\right]$, the set B is not closed under multiplication. Therefore it is not a subgroup.

Explanation 2:
The set B does not contain the identity matrix $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$, therefore it is not a subgroup.

Section 3.3, Problem 5:

Prove that if G_{1} and G_{2} are abelian groups, then the direct product $G_{1} \times G_{2}$ is abelian.

Solution:

Let $a, b \in G_{1} \times G_{2}$, then $a=\left(a_{1}, a_{2}\right)$ and $b=\left(b_{1}, b_{2}\right)$ where $a_{1}, b_{1} \in G_{1}$ and $a_{2}, b_{2} \in G_{2}$. Since G_{1} and G_{2} are abelian, $a_{1} b_{1}=b_{1} a_{1}$ and $a_{2} b_{2}=b_{2} a_{2}$. Therefore
$a b=\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}, a_{2} b_{2}\right)=\left(b_{1} a_{1}, b_{2} a_{2}\right)=\left(b_{1}, b_{2}\right)\left(a_{1}, a_{2}\right)=b a$, thus $G_{1} \times G_{2}$ is abelian.

Section 3.3, Problem 8:

Let G_{1} and G_{2} be groups, with subgroups H_{1} and H_{2}, respectively. Show that $\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in H_{1}, x_{2} \in H_{2}\right\}$ is a subgroup of the direct product $G_{1} \times G_{2}$.

Solution:

Let $H=\left\{\left(x_{1}, x_{2}\right) \mid x_{1} \in H_{1}, x_{2} \in H_{2}\right\}$. We will show that H is closed under multiplication, contains the identity element, and is closed under inverses.

If $\left(x_{1}, x_{2}\right)$ and $\left(y_{1}, y_{2}\right)$ are in H, i.e. $x_{1}, y_{1} \in H_{1}$ and $x_{2}, y_{2} \in H_{2}$, then $x_{1} y_{1} \in H_{1}$ and $x_{2} y_{2} \in H_{2}$ since H_{1} and H_{2} are subgroups (and therefore are closed under multiplication). Then $\left(x_{1}, x_{2}\right)\left(y_{1}, y_{2}\right)=\left(x_{1} y_{1}, x_{2} y_{2}\right) \in H$. So H is closed under multiplication.

Let e_{1} and e_{2} be the identity elements in G_{1} and G_{2}, respectively. Then $\left(e_{1}, e_{2}\right)$ is the identity element in $G_{1} \times G_{2}$. Since H_{1} and H_{2} are subgroups, $e_{1} \in H_{1}$ and $e_{2} \in H_{2}$. Therefore $\left(e_{1}, e_{2}\right) \in H$, so H contains the identity element.

If $\left(x_{1}, x_{2}\right) \in H$, then $\left(x_{1}, x_{2}\right)^{-1}=\left(x_{1}^{-1}, x_{2}^{-1}\right) \in H$ since $x_{1}^{-1} \in H_{1}$ and $x_{2}^{-1} \in H_{2}$ (again, since H_{1} and H_{2} are subgroups).

Thus H is a subgroup of $G_{1} \times G_{2}$.

Section 3.3, Problem 10:

Let $n>2$ be an integer, and let $X \in S_{n} \times S_{n}$ be the set $X=\{(\sigma, \tau) \mid \sigma(1)=\tau(1)\}$. Show that X is not a subgroup of $S_{n} \times S_{n}$.

Solution:

Consider $\sigma=(123)$ and $\tau=(12)$. Since $\sigma(1)=2=\tau(1),(\sigma, \tau) \in X$. However, we will show that $(\sigma, \tau)^{-1}=\left(\sigma^{-1}, \tau^{1}\right) \notin X$. Indeed, $\sigma^{-1}=(132)$ and $\tau^{-1}=(12)$, so $\sigma^{-1}(1)=3$ and $\tau^{-1}(1)=2$, so $\sigma^{-1}(1) \neq \tau^{-1}(1)$. Thus X is not closed under the inverses, and therefore is not a subgroup of $S_{n} \times S_{n}$.

