Math 151

Solutions to selected homework problems

Section 3.4, Problem 2:

Show that the multiplicative group \mathbb{Z}_{7}^{\times}is isormorphic to the additive group Z_{6}.

Solution:

Define $\phi: Z_{6} \rightarrow \mathbb{Z}_{7}^{\times}$by $\phi\left([x]_{6}\right)=[3]_{7}^{x}$.
First we will show that ϕ is well-defined. If $\left[x_{1}\right]_{6}=\left[x_{2}\right]_{6}$, then $x_{1}=x_{2}+6 k$ for some $k \in \mathbb{Z}$. Then $\phi\left(\left[x_{1}\right]_{6}\right)=[3]_{7}^{x_{1}}=[3]_{7}^{x_{2}+6 k}=[3]_{7}^{x_{2}} \cdot[3]_{7}^{6 k}=[3]_{7}^{x_{2}} \cdot\left([3]_{7}^{2}\right)^{3 k}=[3]_{7}^{x_{2}} \cdot\left([9]_{7}\right)^{3 k}=$ $[3]_{7}^{x_{2}} \cdot\left([2]_{7}\right)^{3 k}=[3]_{7}^{x_{2}} \cdot\left([2]_{7}^{3}\right)^{k}=[3]_{7}^{x_{2}} \cdot\left([8]_{7}\right)^{k}=[3]_{7}^{x_{2}} \cdot\left([1]_{7}\right)^{k}=[3]_{7}^{x_{2}} \cdot[1]_{7}=[3]_{7}^{x_{2}}=\phi\left(\left[x_{2}\right]_{6}\right)$.

To show that ϕ is a bijection, we compute the values of all elements in Z_{6} : $\phi\left([0]_{6}\right)=$ $[3]_{7}^{0}=[1]_{7} ; \phi\left([1]_{6}\right)=[3]_{7}^{1}=[3]_{7} ; \phi\left([2]_{6}\right)=[3]_{7}^{2}=[2]_{7} ; \phi\left([3]_{6}\right)=[3]_{7}^{3}=[6]_{7} ; \phi\left([4]_{6}\right)=$ $[3]_{7}^{4}=[4]_{7} ; \phi\left([5]_{6}\right)=[3]_{7}^{5}=[5]_{7} ;$ Since all images are distinct and every element in \mathbb{Z}_{7}^{\times}is the image of some element in Z_{6}, we have a bijection.

Finally, we will show that ϕ preserves the operation: $\phi\left(\left[x_{1}\right]_{6}+\left[x_{2}\right]_{6}\right)=\phi\left(\left[x_{1}+x_{2}\right]_{6}\right)=$ $[3]_{7}^{x_{1}+x_{2}}=[3]_{7}^{x_{1}} \cdot[3]_{7}^{x_{2}}=\phi\left(\left[x_{1}\right]_{6}\right) \cdot \phi\left(\left[x_{2}\right]_{6}\right)$.

It follows from the above that ϕ is an isomorphism.

Section 3.4, Problem 6:

Let G_{1} and G_{2} be groups. Show that $G_{2} \times G_{1}$ is isomorphic to $G_{1} \times G_{2}$.

Solution:

Define $\phi: G_{2} \times G_{1} \rightarrow G_{1} \times G_{2}$ by $\phi((y, x))=(x, y)$ for all $(y, x) \in G_{2} \times G_{1}$.
The function ϕ is one-to-one because if $\phi\left(\left(y_{1}, x_{1}\right)\right)=\phi\left(\left(y_{2}, x_{2}\right)\right)$, then $\left(x_{1}, y_{1}\right)=\left(x_{2}, y_{2}\right)$, so $x_{1}=x_{2}$ and $y_{1}=y_{2}$. Thus $\left(y_{1}, x_{1}\right)=\left(y_{2}, x_{2}\right)$.

It is onto because for any $(x, y) \in G_{1} \times G_{2}$, we have $\phi((y, x))=(x, y)$.
Finally, it preserves the operation: $\phi\left(\left(y_{1}, x_{1}\right)\left(y_{2}, x_{2}\right)\right)=\phi\left(\left(y_{1} y_{2}, x_{1} x_{2}\right)\right)=\left(x_{1} x_{2}, y_{1} y_{2}\right)=$ $\left(x_{1}, y_{1}\right)\left(x_{2}, y_{2}\right)=\phi\left(\left(y_{1}, x_{1}\right)\right) \phi\left(\left(y_{2}, x_{2}\right)\right)$.

Section 3.4, Problem 15:

Let G be any group, and let a be a fixed element of G. Define a function $\phi_{a}: G \rightarrow G$ by $\phi_{a}(x)=a x a^{-1}$, for all $x \in G$. Show that ϕ_{a} is an isomorphism.

Solution:

First we will show that ϕ_{a} is one-to-one: if $\phi_{a}\left(x_{1}\right)=\phi_{a}\left(x_{2}\right)$, then $a x_{1} a^{-1}=a x_{2} a^{-1}$. Multiplying both sides of this equation by a on the right gives $a x_{1} a^{-1} a=a x_{2} a^{-1} a$, i.e. $a x_{1}=a x_{2}$. Multiplying now by a^{-1} on the left gives $a^{-1} a x_{1}=a^{-1} a x_{2}$, i.e. $x_{1}=x_{2}$.

Next, ϕ is onto since for any $y \in G, \phi_{a}\left(a^{-1} y a\right)=a a^{-1} y a a^{-1}=y$.

Finally, ϕ preserves the operation: $\phi_{a}\left(x_{1} x_{2}\right)=a x_{1} x_{2} a^{-1}=a x_{1} a^{-1} a x_{2} a^{-1}=\phi_{a}\left(x_{1}\right) \phi_{a}\left(x_{2}\right)$.

Section 3.4, Problem 20:

Let G_{1} and G_{2} be groups. Show that G_{1} is isomorphic to the subgroup of the direct product $G_{1} \times G_{2}$ defined by $\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=e\right\}$.

Solution:

Let $H=\left\{\left(x_{1}, x_{2}\right) \mid x_{2}=e\right\}$. Define $\phi: G_{1} \rightarrow H$ by $\phi(x)=(x, e)$.
Then ϕ is one-to-one since if $\phi\left(x_{1}\right)=\phi\left(x_{2}\right)$, then $\left(x_{1}, e\right)=\left(x_{2}, e\right)$, so $x_{1}=x_{2}$.
Also, ϕ is onto since for any element $\left(x_{1}, x_{2}\right) \in H, x_{2}=e$, and thus $\phi\left(x_{1}\right)=\left(x_{1}, e\right)=$ $\left(x_{1}, x_{2}\right)$.
Finally, ϕ preserves the operation since $\phi\left(x_{1} x_{2}\right)=\left(x_{1} x_{2}, e\right)=\left(x_{1}, e\right)\left(x_{2}, e\right)=\phi\left(x_{1}\right) \phi\left(x_{2}\right)$.
Thus ϕ is an isomorphism.

Section 3.5, Problem 8:

Find $\langle\pi\rangle$ in \mathbb{R}^{\times}.

Solution:

Since $\pi>1$, for any $k<n$ we have $\pi^{k}<\pi^{n}$. So all powers of π are distinct. Therefore $<\pi>=\left\{\ldots, \pi^{-2}, \pi^{-1}, 1, \pi, \pi^{2}, \ldots\right\}$.

Section 3.5, Problem 11:

Which of the groups $Z_{7}^{\times}, Z_{10}^{\times}, Z_{12}^{\times}, Z_{14}^{\times}$are isomorphic?

Solution:

First we find the orders of the given groups: $\left|Z_{7}^{\times}\right|=|\{[1],[2],[3],[4],[5],[6]\}|=6$, $\left|Z_{10}^{\times}\right|=|\{[1],[3],[7],[9]\}|=4, \quad\left|Z_{12}^{\times}\right|=|\{[1],[5],[7],[11]\}|=4$, $\left|Z_{14}^{\times}\right|=|\{[1],[3],[5],[9],[11],[13]\}|=6$. Since isomorphic groups have the same order, we have to check two pairs: Z_{7}^{\times}and $Z_{14}^{\times} ; Z_{10}^{\times}$and Z_{12}^{\times}.

Both Z_{7}^{\times}and Z_{14}^{\times}are cyclic of order 6 (we check below that both are generated by [3]), therefore they both are isomorphic to Z_{6}, and thus isomorphic to each other:
$<[3]_{7}>=\left\{[1]_{7},[3]_{7},[2]_{7},[6]_{7},[4]_{7},[5]_{7}\right\}=Z_{7}^{\times} ;$
$<[3]_{14}>=\left\{[1]_{14},[3]_{14},[9]_{14},[13]_{14},[11]_{14},[5]_{14}\right\}=Z_{14}^{\times}$.
However, the groups Z_{10}^{\times}and Z_{12}^{\times}are not isomophic because Z_{10}^{\times}is cyclic (it is generated by [3]), but Z_{12}^{\times}is not cyclic (the order of each element is either 1 or 2):
$<[3]_{10}>=\left\{[1]_{10},[3]_{10},[9]_{10},[7]_{10}\right\}=Z_{10}^{\times} ;$
$[5]_{12}^{2}=[7]_{12}^{2}=[11]_{12}^{2}=[1]_{12}$.

