Math 151

Solutions to selected homework problems

Section 3.6, Problem 1(b,d):
Find the orders of each of these permutations.
(b) $(1,2,5)(2,3,4)(5,6)$
(d) $(1,2,3)(2,4,3,5)(1,3,2)$

Solution:

We know that if a permutation is written as a product of disjoint cycles, then its order is the LCM of the lengths of the cycles. So first we write each permutation as a product of disjoint cycles.
(b) $(1,2,5)(2,3,4)(5,6)=(1,2,3,4,5,6)$. The order of this permutation is 6 .
(d) $(1,2,3)(2,4,3,5)(1,3,2)=(1,5,3,4)(2)=(1,5,3,4)$. The order of this permutation is 4 .

Section 3.6, Problem 4:

Find the permutations that correspond to the rigid motions of a rectangle that is not a square. Do the same for the rigid motions of a rhombus (diamond) that is not a square.

Solution:

Rigid motions of the rectangle: $(1),(1,4)(2,3),(1,2)(3,4),(1,3)(2,4)$.
Rigid motions of the rhombus: $(1),(1,3),(2,4),(1,3)(2,4)$.

Section 3.6, Problem 9:

A rigid motion of a cube can be thought of either as a permutation of its eight vertices or as a permutation of its six sides. Find a rigid motion of the cube that has order 3 , and express the permutation that represents it in both ways, as a permutation on eight elements and as a permutation on six elements.

Solution:

Rigid motion of order 3: rotation about the line shown (passing through vertices 1 and 7), through an angle of 120 degrees.

Permutation of vertices: $(2,4,5)(3,8,6)$.
Permutation of sides: $(F, L, B)(T, K, R)$ (letters F, L, B, T, K, and R stand for front, left, bottom, top, back, and right respectively).

Section 3.6, Problem 13:

List the elements of A_{4}.

Solution:

Recall that A_{4} consists of all even permutations in S_{4}.
Elements of A_{4} are: $(1),(1,2,3),(1,3,2),(1,2,4),(1,4,2),(1,3,4),(1,4,3),(2,3,4)$, $(2,4,3),(1,2)(3,4),(1,3)(2,4),(1,4)(2,3)$.
(Just checking: the order of a subgroup must divide the order of the group. We have listed 12 elements, $\left|S_{4}\right|=24$, and $12 \mid 24$.)

Section 3.6, Problem 25:

Show that S_{n} is isomorphic to a subgroup of A_{n+2}.

Solution:

Hint: define $\phi: S_{n} \rightarrow A_{n+2}$ by

$$
\phi(\sigma)= \begin{cases}\sigma & \text { if } \sigma \text { is even } \\ (\sigma)(n+1, n+2) & \text { if } \sigma \text { is odd }\end{cases}
$$

Show that ϕ is a homomorphism.

Section 3.7, Problem 3(b):

Show that the following functions are homomorphisms.
(b) $\phi: \mathbb{R}^{\times} \rightarrow \mathbb{R}^{\times}$defined by $\phi(x)=\frac{x}{|x|}$.

Solution:

$\phi(x y)=\frac{x y}{|x y|}=\frac{x y}{|x| \cdot|y|}=\frac{x}{|x|} \frac{y}{|y|}=\phi(x) \phi(y)$.
Section 3.7, Problem 4:

Let G be an abelian group, and let n be any positive integer. Show that the function $\phi: G \rightarrow G$ defined by $\phi(x)=x^{n}$ is a homomorphism.

Solution:

Since the group is abelian, any two elements x and y commute. Thus $\phi(x y)=(x y)^{n}=$ $(x y)(x y) \ldots(x y)=x x \ldots x y y \ldots y=x^{n} y^{n}$.

Section 3.7, Problem 7(b,d):

Which of the following functions are homomorphisms?
(b) $\phi: \mathbb{R} \rightarrow \mathrm{GL}_{2}(\mathbb{R})$ defined by $\phi(a)=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]$
(d) $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$defined by $\phi\left(\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\right)=a b$

Solution:
(b) $\phi(a+b)=\left[\begin{array}{cc}1 & a+b \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]\left[\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right]=\phi(a) \phi(b)$, so ϕ is a homomorphism.
(d) Since $\phi\left(I_{2}\right)=0 \neq 1$, the function is not a homomorphism (recall that any homomorphism must send the identity element to the identity element).

Section 3.7, Problem 9:

Let ϕ be a group homomorphism of G_{1} onto G_{2}. Prove that if G_{1} is abelian then so is G_{2}; prove that if G_{1} is cyclic then so is G_{2}. In each case, give a counterexample to the converse of the statement.

Solution:

Let G_{1} be abelian. Let $a, b \in G_{2}$. Since ϕ is onto, there exist $x, y \in G_{1}$ such that $\phi(x)=a$ and $\phi(y)=b$. Then $a b=\phi(x) \phi(y)=\phi(x y)=\phi(y x)=\phi(y) \phi(x)=b a$, so G_{2} is abelian.

Let G_{1} be cyclic. Then $G_{1}=<x>$ for some $x \in G_{1}$, i.e. $G_{1}=\left\{x^{n} \mid n \in \mathbb{Z}\right\}$. Then $G_{2}=\phi\left(G_{1}\right)=\left\{\phi\left(x^{n}\right) \mid n \in \mathbb{Z}\right\}=\left\{(\phi(x))^{n} \mid n \in \mathbb{Z}\right\}=<\phi(x)>$, so G_{2} is cyclic.

Now consider $\phi: \mathrm{GL}_{2}(\mathbb{R}) \rightarrow \mathbb{R}^{\times}$defined by $\phi(A)=\operatorname{det}(A)$. Since $G L_{2}(\mathbb{R})$ is not abelian but \mathbb{R}^{\times}is abelian, we have a counterexample to the converse of the first statement.

Finally, consider $\phi: \mathbb{Z}_{2} \times \mathbb{Z}_{2} \rightarrow \mathbb{Z}_{2}$ definded by $\phi((x, y))=(x, 0)$. Since \mathbb{Z}_{2} is cyclic, but $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ is not, we have a counterexample to the converse of the second statement.

Alternatively, $\phi: S_{3} \rightarrow \mathbb{Z}_{2}$ defined by

$$
\phi(\sigma)= \begin{cases}0 & \text { if } \sigma \text { is even }, \\ 1 & \text { if } \sigma \text { is odd }\end{cases}
$$

is a counterexample to the converses of both statements, since Z_{2} is both abelian and cyclic, but S_{3} is neither.
(Note: there are many other counterexamples.)

