Solutions to selected homework problems

Section 4.3, Problem 5:

Let $\phi: F_{1} \rightarrow F_{2}$ be an isomorphism of fields. Prove that $\phi(1)=1$ (that is, prove that ϕ must map the multiplicative identity of F_{1} to the multiplicative identity of F_{2}).

Solution:

Since $\phi(0)=0,1 \neq 0$, and ϕ is a bijection, $\phi(1) \neq 0$. Therefore $\phi(1)$ has a multiplicative inverse.

Then $\phi(1)=\phi(1) \cdot 1=\phi(1) \phi(1)(\phi(1))^{-1}=p h i(1 \cdot 1)(\phi(1))^{-1}=p h i(1)(\phi(1))^{-1}=1$.

Section 4.3, Problem 9:

Prove that $\mathbb{R}[x] /<x^{2}+x+1>$ is isomorphic to \mathbb{C}.

Hint:

We need to construct an isomorphism between these to fields, say, $\phi: \mathbb{C} \rightarrow \mathbb{R}[x] /<$ $x^{2}+x+1>$.

Since the multiplicative identity must be mapped to the multiplicative identity, we must have $\phi(1)=[1]$. We need to determine $\phi(i)$. Since $i^{2}=-1$, we must send i to a class whose square is equal to $[-1]$. So let $\phi(i)=a x+b$, and we need $[a x+b]^{2}=[-1]$: $\left[a^{2} x^{2}+2 a b x+b^{2}\right]=[-1]$ $\left[a^{2}(-x-1)+2 a b x+b^{2}\right]=[-1]$
$\left[\left(2 a b-a^{2}\right) x+\left(b^{2}-a^{2}\right)\right]=[-1]$
$2 a b-a^{2}=0, b^{2}-a^{2}=-1$. Solve this system, and then define $\phi(c+d i)=[c+d(a x+b)]$.
Show that this function is a bijection, preserves addition, and preserves multiplication.

Section 4.3, Problem 21(b):

Find the multiplicative inverse of $[a+b x]$ in $\mathbb{Q}[x] /\left\langle x^{2}-2\right\rangle$.

Solution:

Case I: $b=0, a=0$. Then $[a+b x]=[0]$ does not have a multiplicative inverse.
Case II: $b=0, a \neq 0$. Then $[a]^{-1}=\left[a^{-1}\right]$.
Case III: $b \neq 0$.
Dividing $x^{2}-2$ by $a+b x$ gives:

$$
x^{2}-2=\left(\frac{1}{b} x-\frac{a}{b^{2}}\right)(b x+a)+\frac{a^{2}-2 b^{2}}{b^{2}}
$$

Case IIIA: $a^{2}-2 b^{2} \neq 0$, The remainder is a nonzero constant, therefore the gcd of $x^{2}-2$
and $a+b x$ is 1 . Then

$$
\begin{aligned}
& \frac{b^{2}}{a^{2}-2 b^{2}}\left(x^{2}-2\right)=\frac{b^{2}}{a^{2}-2 b^{2}}\left(\frac{1}{b} x-\frac{a}{b^{2}}\right)(b x+a)+1 \\
& \frac{b^{2}}{2 b^{2}-a^{2}}\left(\frac{1}{b} x-\frac{a}{b^{2}}\right)(b x+a)=1-\frac{b^{2}}{a^{2}-2 b^{2}}\left(x^{2}-2\right)
\end{aligned}
$$

So $[b x+a]^{-1}=\left[\frac{b^{2}}{2 b^{2}-a^{2}}\left(\frac{1}{b} x-\frac{a}{b^{2}}\right)\right]=\left[\frac{b x-a}{2 b^{2}-a^{2}}\right]$.
Case IIIB: $a^{2}-2 b^{2}=0$. Then $a^{2}=2 b^{2}$, and $[a+b x][a-b x]\left[a^{2}-b^{2} x^{2}\right]=\left[2 b^{2}-b^{2} x^{2}\right]=$ $\left[b^{2}\left(2-x^{2}\right)\right]=[0]$, and $[a+b x]$ does not have a multiplicative inverse.

