Math 151

Solutions to selected homework problems

Section 4.3, Problem 5:

Let $\phi: F_1 \to F_2$ be an isomorphism of fields. Prove that $\phi(1) = 1$ (that is, prove that ϕ must map the multiplicative identity of F_1 to the multiplicative identity of F_2).

Solution:

Since $\phi(0) = 0, 1 \neq 0$, and ϕ is a bijection, $\phi(1) \neq 0$. Therefore $\phi(1)$ has a multiplicative inverse.

Then $\phi(1) = \phi(1) \cdot 1 = \phi(1)\phi(1)(\phi(1))^{-1} = phi(1 \cdot 1)(\phi(1))^{-1} = phi(1)(\phi(1))^{-1} = 1.$

Section 4.3, Problem 9:

Prove that $\mathbb{R}[x]/\langle x^2 + x + 1 \rangle$ is isomorphic to \mathbb{C} .

Hint:

We need to construct an isomorphism between these to fields, say, $\phi : \mathbb{C} \to \mathbb{R}[x] / \langle x^2 + x + 1 \rangle$.

Since the multiplicative identity must be mapped to the multiplicative identity, we must have $\phi(1) = [1]$. We need to determine $\phi(i)$. Since $i^2 = -1$, we must send i to a class whose square is equal to [-1]. So let $\phi(i) = ax + b$, and we need $[ax + b]^2 = [-1]$: $[a^2x^2 + 2abx + b^2] = [-1]$ $[a^2(-x-1) + 2abx + b^2] = [-1]$ $[(2ab - a^2)x + (b^2 - a^2)] = [-1]$ $2ab - a^2 = 0, b^2 - a^2 = -1$. Solve this system, and then define $\phi(c+di) = [c+d(ax+b)]$.

Show that this function is a bijection, preserves addition, and preserves multiplication.

Section 4.3, Problem 21(b):

Find the multiplicative inverse of [a + bx] in $\mathbb{Q}[x]/\langle x^2 - 2 \rangle$.

Solution:

Case I: b = 0, a = 0. Then [a + bx] = [0] does not have a multiplicative inverse.

Case II: $b = 0, a \neq 0$. Then $[a]^{-1} = [a^{-1}]$.

Case III: $b \neq 0$.

Dividing $x^2 - 2$ by a + bx gives:

$$x^{2} - 2 = \left(\frac{1}{b}x - \frac{a}{b^{2}}\right)(bx + a) + \frac{a^{2} - 2b^{2}}{b^{2}}$$

Case IIIA: $a^2 - 2b^2 \neq 0$, The remainder is a nonzero constant, therefore the gcd of $x^2 - 2$

and a + bx is 1. Then

$$\frac{b^2}{a^2 - 2b^2} (x^2 - 2) = \frac{b^2}{a^2 - 2b^2} \left(\frac{1}{b}x - \frac{a}{b^2}\right) (bx + a) + 1$$
$$\frac{b^2}{2b^2 - a^2} \left(\frac{1}{b}x - \frac{a}{b^2}\right) (bx + a) = 1 - \frac{b^2}{a^2 - 2b^2} (x^2 - 2)$$
So $[bx + a]^{-1} = \left[\frac{b^2}{2b^2 - a^2} \left(\frac{1}{b}x - \frac{a}{b^2}\right)\right] = \left[\frac{bx - a}{2b^2 - a^2}\right].$

Case IIIB: $a^2 - 2b^2 = 0$. Then $a^2 = 2b^2$, and $[a + bx][a - bx][a^2 - b^2x^2] = [2b^2 - b^2x^2] = [b^2(2 - x^2)] = [0]$, and [a + bx] does not have a multiplicative inverse.