

Practice problems for Test 1

Answers

- 1. (a) 17
 - (b) m = 2, n = -1
- 3. Solve the congruences:
 - (a) $x \equiv 3 \pmod{8}$
 - (b) No solutions
- 4. $x \equiv 156 \pmod{275}$
- 5. (a) It is the number of positive integers less than or equal to n that are relatively prime to n.
 - (b) 8
- 6. 10; [901]
- 7. (a) Well-defined function. Not one-to-one, not onto.
 - (b) Not a well-defined function.
- 9. (a) Yes. Infinitely many equivalence classes containing 2 elements $\{x, -x\}$ for positive x, and one class containing 1 element $\{0\}$.
 - (b) No. Reflexive law is not satisfied for x = 0.
 - (c) Yes. 3 equivalence classes: \mathbb{Z}_+ , $\{0\}$, and \mathbb{Z}_- .
- 10. (a) $\sigma \tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 1 & 6 & 2 \end{pmatrix}, \ \tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 2 & 3 & 4 \end{pmatrix}.$
 - (b) No
 - (c) $\sigma^{-1} = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 4 & 5 & 3 \end{pmatrix}, \tau^{-1} = \tau.$
 - (d) $\sigma = (1362), \tau = (24)(35)$
 - (e)

τ

σ

- (f) $\sigma = (13)(36)(62)$
- (g) σ is odd; τ is even.