## Practice problems for Test 2

## Answers

1. (Note: feel free to show me your examples to make sure they are correct.)

| group | order | abelian? | cyclic? |
| :--- | :--- | :--- | :--- |
| $\mathbb{Z}_{5}^{*}$ | 4 | yes | yes |
| $\mathbb{Z}_{6}$ | 6 | yes | yes |
| $S_{3}$ | 6 | no | no |
| $\mathbb{Z}_{4} \oplus \mathbb{Z}_{2}$ | 8 | yes | no |
| $\mathbb{Z}$ | $\infty$ | yes | yes |
| $G L_{2}(\mathbb{R})$ | $\infty$ | no | no |
| $\{e\}=$ trivial | 1 | yes | yes |
| $D_{5}$ | 10 | no | no |
| $M a t_{2 \times 3}\left(\mathbb{Z}_{2}\right)$ | 64 | yes | no |
| $\mathbb{R}$ | $\infty$ | yes | no |

3. $\mathbb{R} \cong \mathbb{R}^{+} ; \mathbb{Z}_{2} \oplus \mathbb{Z}_{8} \cong \mathbb{Z}_{8} \oplus \mathbb{Z}_{2}$.
4. 4. $\left\{\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right],\left[\begin{array}{ll}4 & 0 \\ 0 & 4\end{array}\right],\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]\right\}$.
1. (a) 8
(b) $H=\{0,6,12,18\}$ is a cyclic subgroup. Generators: 6 and 18 .
$K=\{0,4,8,12,16,20\}$ is a cyclic subgroup. Generators: 4 and 20.
$H \cap K=\{0,12\}$ is a cyclic subgroup. Generator: 12 .
$H \cup K=\{0,4,6,8,12,16,18,20\}$ is not a subgroup.
$H+K=\{0,2,4,6,8,10,12,14,16,18,20,22\}$ is a cyclic subgroup. Generators: $2,10,14,22$.
2. (a) Yes. $\operatorname{Ker}(f)=\{0\}$. Image $=3 \mathbb{Z}$. One-to-one. Not onto. Not isomorphism.
(b) Yes. $\operatorname{Ker}(f)=4 \mathbb{Z}$. Image $=\mathbb{Z}_{4}$. Not one-to-one. Onto. Not isomorphism.
(c) Yes. $\operatorname{Ker}(f)=3 \mathbb{Z}$. Image $=2 \mathbb{Z}_{6}$. Not one-to-one. Not onto. Not isomorphism.
(d) No.
(e) Yes. $\operatorname{Ker}(f)=\{[0]\}$. Image $=\mathbb{Z}_{10}$. One-to-one. Onto. Isomorphism.
(f) Yes. $\operatorname{Ker}(f)=\{(x,-x)\}$. Image $=\mathbb{R}$. Not one-to-one. Onto. Not isomorphism.
(g) Yes. $\operatorname{Ker}(f)=\{(1,1)\}$. Image $=\left\{\left[\begin{array}{ll}a & b \\ -2 b & a+3 b\end{array}\right]\right\}$. One-to-one. Not onto. Not isomorphism.
