Practice problems for Test 2 Solutions

		v	1
group	order	abelian?	cyclic?
\mathbb{Z}_5^*	4	yes	yes
\mathbb{Z}_6	6	yes	yes
S_3	6	no	no
$\mathbb{Z}_4 \oplus \mathbb{Z}_2$	8	yes	no
Z	∞	yes	yes
$GL_2(\mathbb{R})$	∞	no	no
$\{e\}$ =trivial	1	yes	yes
D_5	10	no	no
$Mat_{2\times 3}(\mathbb{Z}_2)$	64	yes	no
R	∞	yes	no

1. (Note: feel free to show me your examples to make sure they are correct.)

 \mathbb{Z}_5^* consists of all units in \mathbb{Z}_5 , and it is a group under multiplication. $\mathbb{Z}_5^* = \{1, 2, 3, 4\}$, so $|\mathbb{Z}_5^*| = 4$. It is abelian since multiplication of numbers is commutative. It is cyclic because it is generated by $2: \langle 2 \rangle = \{1, 2, 4, 3\} = \mathbb{Z}_5^*$.

 $\mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} = <1 >$ is an abelian cyclic group (under addition) of order 6. (In general, $\mathbb{Z}_n = \{0, 1, 2, \dots, n-1\} = <1 >$ is an abelian cyclic group of order n.)

 $S_3 = \{(1), (12), (13), (23), (123), (132)\}$ has order 6. It is not abelian because e.g. (12)(13) = (132) and (13)(12) = (123). (In general, S_n , the permutation group on a set of *n* elements, it has order *n*! and is non-abelian.) It is not cyclic because every cyclic group is abelian and this one is not.

 $\mathbb{Z}_4 \oplus \mathbb{Z}_2 = \{(x, y) \mid x \in \mathbb{Z}_4, y \in \mathbb{Z}_2\}$ is the set of all pairs, and it has order $4 \cdot 2 = 8$. It is abelian since both \mathbb{Z}_4 and \mathbb{Z}_2 are. It is not cyclic because it has no element of order 8: it is easy to check that the order of each element is ≤ 4 .

 \mathbb{Z} is an infinite cyclic group consisting of all integer numbers (with addition). It is abelian since addition of numbers is abelian. It is cyclic because it is generated by 1.

 $GL_2(\mathbb{R})$ is the group of 2×2 invertible matrices with real entries under multiplication. There are infinitely many such matrices, so its order is infinity. It is not abelian because e.g. $\begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 0 \end{bmatrix}$

 $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \text{ and } \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 3 & 0 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix}.$ It is not cyclic because every cyclic group is abelian.

 $\{e\}$ =trivial group has only one element. It is abelian (all elements commute), and cyclic (generated by e). It is a very uninteresting group, but I just wanted to give an example of a group of order 1.

 D_5 , dihedral group of order $2 \cdot 5 = 10$, is the group of rigid motions of a regular pentagon. Its elements are $e, a, a^2, a^3, a^4, b, ab, a^2b, a^3b, a^4b$. It is not abelian (e.g. $ba = a^4b \neq ab$), and hence not cyclic.

 $Mat_{2\times3}(\mathbb{Z}_2)$ is the group of all 2×3 matrices with entries in \mathbb{Z}_2 under addition. Its order is 64: each entry can be either 0 or 1, and there are 6 entries, so there are $2^6 = 64$ such matrices. It is abelian since addition in \mathbb{Z}_2 is commutative. But it is not cyclic: each non-zero element has order 2 because if you add an entry of a matrix to itself you'll get 0, thus any matrix added to itself gives the zero matrix. Therefore there is no element (matrix) of order 64.

 \mathbb{R} is an infinite group of real numbers under addition. It is abelian (addition of numbers is commutative) but not cyclic: every nonzero element generates a cyclic subgroup consisting of its own multiples, thus every cyclic subgroup has a smallest positive element. But \mathbb{R} does not have any.

- 2. (a) Let $S = \{A \in GL_2(\mathbb{R}) \mid \det(A) > 0\}$. First, S is closed under multiplication since if $A, B \in S$, then $\det(A) > 0$ and $\det(B) > 0$, and then $\det(AB) = \det(A)\det(B) > 0$, so $AB \in S$. Second, S contains the identity matrix, since $\det(I_2) = 1 > 0$. Finally, S is closed under the inverses since if $A \in S$, then $\det(A) > 0$, and then $\det(A^{-1}) = (\det(A))^{-1} > 0$, so $A^{-1} \in S$. Thus the set S is a subgoup.
 - (b) The set is not a subgroup because it does not contain the identity matrix, since $det(I_2) = 1$.
 - (c) The set is not a subgroup because it is not closed under the inverses, e.g. for $A = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$, $\det(A) = 4 \in \mathbb{Z}$, so A is in the set, but $A^{-1} = \begin{bmatrix} 0.5 & 0 \\ 00.5 \end{bmatrix}$ has $\det(A^{-1}) = 0.25 \notin \mathbb{Z}$, so A^{-1} is not in the set.
- 3. First notice that \mathbb{R} , \mathbb{R}^* , \mathbb{R}^+ , and $GL_2(\mathbb{R})$ have infinite order, while $\mathbb{Z}_4 \oplus \mathbb{Z}_4$, $\mathbb{Z}_2 \oplus \mathbb{Z}_8$, $\mathbb{Z}_8 \oplus \mathbb{Z}_2$, and \mathbb{Z}_{16} have order 16. So we only have to check the first 4 groups, and the last 4 groups, separately.

Among the first 4 groups, \mathbb{R} and \mathbb{R}^+ are isomorphic: let $f : \mathbb{R} \to \mathbb{R}^+$ be defined by $f(x) = e^x$. Then $f(x + y) = e^{x+y} = e^x e^y = f(x)f(y)$. f is one-to-one because if f(x) = f(y) then $e^x = e^y$, then $\ln e^x = \ln e^y$ which implies x = y. Finally, f is onto because for any positive real z, let $x = \ln z$, then $f(x) = f(\ln z) = e^{\ln z} = z$. (See example 3.4.2 on p.129.)

Groups \mathbb{R} and \mathbb{R}^* are not isomorphic because the first group has no element of order 2, and the second group has an element of order 2, namely $-1: (-1)^2 = 1$. \mathbb{R}^+ and \mathbb{R}^* are not isomorphic for the same reason. (See example 3.4.3 on p.130.)

Finally, $GL_2(\mathbb{R})$ is not isomophic to any of the above because $GL_2(\mathbb{R})$ has an element of order 4 (e.g. see exercise 1(b) on page 112), but the other groups do not.

Among the last 4 groups, $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ and $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ are isomorphic: define $f : \mathbb{Z}_2 \oplus \mathbb{Z}_8 \to \mathbb{Z}_8 \oplus \mathbb{Z}_2$ by f((x,y)) = (y,x). Obviously this is a 1-1 correspondence, and it is a homomorphism because f((x,y) + (z,w)) = f((x+z,y+w)) = (y+w,x+z) = (y,x) + (w,z) = f((x,y)) + f((z,w)).

All other pairs are not isomorphic: $\mathbb{Z}_4 \oplus \mathbb{Z}_4$ only has elements of order ≤ 4 ; $\mathbb{Z}_2 \oplus \mathbb{Z}_8$ and $\mathbb{Z}_8 \oplus \mathbb{Z}_2$ have elements of order 8 but no elements of order 16; \mathbb{Z}_{16} has elements of order 16.

4. Let's denote this subset of G by H. We want to show that H is a subgroup.

Closed under multiplication: if $a, b \in H$, then $a^2 = b^2 = e$. Then $(ab)^2 = a^2b^2 = e \cdot e = e$, so $ab \in H$. Identity: $\operatorname{ord}(e) = 1 \leq 2$, so $e \in H$. Closed under inverses: if $a \in H$, then $a^2 = e$. Then $(a^{-1})^2 = (a^2)^{-1} = e^{-1} = e$, so $a^{-1} \in H$.

- 5. Let's denote the given matrix by A. We have to compute powers of A until we get the identity matrix. The smallest positive k such that $A^k = I$ is then the order of A, and the cyclic subgroup generated by A is $\{I, A, A^2, \ldots, A^{k-1}\}$. Notice that entries of our matrices are elements of \mathbb{Z}_3 , so each time we multiply matrices, we have to reduce each entry of the product modulo 3. Then $<\begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix} > = \left\{I_2, \begin{bmatrix} 2 & 1 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 2 \\ 0 & 2 \end{bmatrix}\right\}$. Therefore the order of A is 6.
- (a) Generators of Z₂₄ are numbers (more precisely, classes of numbers) between 0 and 24 that are relatively prime to 24. There are 8 of them: 1, 5, 7, 11, 13, 17, 19, 23.

- (b) H = {0,6,12,18} is a cyclic subgroup. Generators: 6 and 18. 0 and 12 are not generators because the order of 0 is 1, and the order of 12 is 2.
 K = {0,4,8,12,16,20} is a cyclic subgroup. Generators: 4 and 20.
 H ∩ K = {0,12} is a cyclic subgroup. Generator: 12.
 H ∪ K = {0,4,6,8,12,16,18,20} is not a subgroup: it is not closed under addition, e.g., 4+6 = 10 ∉ H ∪ K.
 H + K = {0,2,4,6,8,10,12,14,16,18,20,22} is a cyclic subgroup. Generators: 2, 10, 14, 22.
- 7. (a) $f : \mathbb{Z} \to \mathbb{Z}$, f(x) = 3x is a homomorphism: f(x + y) = 3(x + y) = 3x + 3y = f(x) + f(y). Ker $(f) = \{0\}$. Image = 3 \mathbb{Z} , the set of all multiples of 3. It is one-to-one because 3x = 3y implies x = y. It is not onto because e.g. 1 is not in the image. It is not an isomorphism because it is not onto.
 - (b) f: Z → Z₄, f(x) = [x]₄ is a homomorphism: f(x + y) = [x + y]₄ = [x]₄ + [y]₄ = f(x) + f(y). Ker(f) = 4Z, the set of all multiples of 4. Image = Z₄. It is not one-to-one because e.g. f(0) = [0]₄ and f(4) = [4]₄ = [0]₄. It is noto: every element of Z₄ is in the image since [x]₄ = f(x). It is not an isomorphism because it is not one-to-one.
 - (c) $f : \mathbb{Z} \to \mathbb{Z}_6$, $f(x) = [2x]_6$ is a homomorphism: $f(x+y) = [2(x+y)]_6 = [2x+2y]_6 = [2x]_6 + [2y]_6 = f(x) + f(y)$. Ker $(f) = 3\mathbb{Z}$, the set of all multiples of 3. Image $= 2\mathbb{Z}_6 = \{0, 2, 4\}$. It is not one-to-one because e.g. $f(0) = [0]_6$ and $f(3) = [6]_6 = [0]_6$. It is not onto because e.g. $[1]_6$ is not in the image. It is not an isomorphism e.g. because it is not one-to-one.
 - (d) $f : \mathbb{Z}_2 \to \mathbb{Z}, f([x]_2) = x$ is not a homomorphism because it is not a well-defined function: $[0]_2 = [2]_2$, but $f([0]_2) = 0, f([2]_2) = 2$, and $0 \neq 2$.
 - (e) $f: \mathbb{Z}_{10} \to \mathbb{Z}_{10}, f([x]_{10}) = [3x]_{10}$ is a homomorphism. First, we will show that this function is well-defined: if $[x]_{10} = [y]_{10}$, then $f([x]_{10}) = [3x]_{10} = [3y]_{10} = f([y]_{10})$. It preserves the operation since $f([x]_{10}+[y]_{10}) = f([x+y]_{10}) = [3x+3y]_{10} = [3x]_{10}+[3y]_{10} = f([x]_{10})+f([y]_{10})$. It is one-to-one: if $f([x]_{10}) = f([y]_{10})$, then $[3x]_{10} = [3y]_{10}$. Multiplying both sides by 7, we get $[21x]_{10} = [21y]_{10}$. Since $[21]_{10} = [1]_{10}$, we have $[x]_{10} = [y]_{10}$. It is onto since for any $[y]_{10}, f([7y]_{10}) = [21y]_{10} = [y]_{10}$. It is an isomorphism since it is a bijection and preserves the operation.
 - (f) $f : \mathbb{R} \oplus \mathbb{R} \to \mathbb{R}$, f((x,y)) = x + y is a homomorphism. The kernel consists of all pairs (x,y) for which x + y = 0, or y = -x. Therefore $\text{Ker}(f) = \{(x, -x)\}$. Image $= \mathbb{R}$: given $z \in \mathbb{R}$, z = f((z,0)) is in the image. It is not one-to-one because e.g. f((1,0)) = 1 and f((2,1)) = 1. It is onto as shown above. It is not an isomorphism because it is not one-to-one.

(g)
$$f: \mathbb{R}^* \times \mathbb{R}^* \to GL_2(\mathbb{R}), f((x,y)) = \begin{bmatrix} 2x - y & y - x \\ 2x - 2y & 2y - x \end{bmatrix}$$
 is a homomorphism:

$$f((x,y))f((z,w)) = \begin{bmatrix} 2x - y & y - x \\ 2x - 2y & 2y - x \end{bmatrix} \begin{bmatrix} 2z - w & w - z \\ 2z - 2w & 2w - z \end{bmatrix}$$

$$= \begin{bmatrix} (2x - y)(2z - w) + (y - x)(2z - 2w) & (2x - y)(w - z) + (y - x)(2w - z) \\ (2x - 2y)(2z - w) + (2y - x)(2z - 2w) & (2x - 2y)(w - z) + (2y - x)(2w - z) \end{bmatrix}$$

$$= \begin{bmatrix} 2xz - yw & yw - xz \\ 2xz - 2yw & 2yw - xz \end{bmatrix} = f((xz, yw)) = f((x, y)(z, w)).$$

The kernel of f consists of all pairs for which 2x - y = 2y - x = 1 and 2x - 2y = y - x = 0. Solving this system gives x = y = 1.

The image of f consists of all matrices of the form $\begin{bmatrix} 2x - y & y - x \\ 2x - 2y & 2y - x \end{bmatrix}$. It is OK to leave this matrix as is. However, I decided to give a slightly more explicit description: let a = 2x - y and b = y - x, then the other two entries can be expressed in terms of a and b, and Image $= \left\{ \begin{bmatrix} a & b \\ -2b & a + 3b \end{bmatrix} \mid$ this matrix must be invertible: $a^2 + 3ab + 4b \neq 0 \right\}$. f is one-to-one since the kernel is trivial, and it is not onto because e.g. $\begin{bmatrix} 1 & 2 \\ 1 & 0 \end{bmatrix}$ is not in the image. It is not an isomorphism because it is not onto.