Practice problems for Test 3 - Solutions

- 1. Let H and K be normal in G. We want to show that $H \cap K$ is normal (we already know that it is a subgroup: there was a homework problem in which we proved that the intersection of any collection of subgroups is a subgroup). Let $x \in H \cap K$, and let $g \in G$. Then $x \in H$ and $x \in K$. Since H is normal, $gxg^{-1} \in H$. Since K is normal, $gxg^{-1} \in K$. Then $gxg^{-1} \in H \cap K$, therefore $H \cap K$ is normal.

2.
$$H$$
 is not normal in G because e.g.
$$\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 2 \end{bmatrix} = \begin{bmatrix} -1 & 4 \\ -1 & 3 \end{bmatrix} \not\in H.$$

K is normal in H because for any $\begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \in K$ and $\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \in H$,

$$\begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} a & b \\ 0 & c \end{bmatrix}^{-1} = \begin{bmatrix} a & b \\ 0 & c \end{bmatrix} \begin{bmatrix} 1 & x \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \frac{1}{a} & \frac{-b}{ac} \\ 0 & \frac{1}{c} \end{bmatrix} = \begin{bmatrix} a & ax + b \\ 0 & c \end{bmatrix} \begin{bmatrix} \frac{1}{a} & \frac{-b}{ac} \\ 0 & \frac{1}{c} \end{bmatrix} = \begin{bmatrix} 1 & \frac{ax}{c} \\ 0 & 1 \end{bmatrix} \in K.$$

K is not normal in G because the counterexample above works in this case too.

- 3. First of all, let's list all the elements of the given set so that we see what we are working with. Since each coefficient (a and b) can be either 0 or 1, we have 4 elements: 0 + 0i, 0+1i, 1+0i, and 1+1i, or, for simplicity, just 0, i, 1, and 1+i. Addition and multiplication are defined as for complex numbers, but the results are reduced modulo 2.
 - It is a commutative ring: it is easy to check that associativity, commutativity, and distributivity hold, the additive identity is 0, the multiplicative identity is 1, the additive inverse of each element is that element itself.
 - $\mathbb{Z}_2(i)$ is not an integral domain because e.g. (1+i)(1+i)=0 while $1+i\neq 0$. It is not a field because every field is an integral domain.

So the quotient is $q(x) = x^3 - 2x$ and the remainder is r(x) = 7x + 1.

- 5. $f(x) = x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2$, $g(x) = x^4 + 3x^2 + 3x + 6$.
 - (a) Using the Euclidean algorithm (modulo 7!), we have: $x^{5} + 4x^{4} + 6x^{3} + 6x^{2} + 5x + 2 = (x^{4} + 3x^{2} + 3x + 6)(x + 4) + (3x^{3} + 5x^{2} + x + 6)$ $x^4 + 3x^2 + 3x + 6 = (3x^3 + 5x^2 + x + 6)(5x + 1)$

Therefore the monic polynomial that is a multiple of $3x^3 + 5x^2 + x + 6$ is the gcd of f and g. To get a monic polynomial, multiply $3x^3 + 5x^2 + x + 6$ by 5 (the multiplicative inverse of 3 modulo 7):

$$d(x) = x^3 + 4x^2 + 5x + 2.$$

(b)
$$3x^3 + 5x^2 + x + 6 = (x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2) - (x^4 + 3x^2 + 3x + 6)(x + 4)$$

Rewrite with a plus:

$$3x^3 + 5x^2 + x + 6 = (x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2) + (x^4 + 3x^2 + 3x + 6)(6x + 3)$$

Multiply both sides by 5:

$$x^3 + 4x^2 + 5x + 2 = (x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2) \cdot 5 + (x^4 + 3x^2 + 3x + 6)(2x + 1)$$

Therefore
$$a(x) = 5$$
 and $b(x) = 2x + 1$.

$$x^3 + x + 1 = (x+4)(x^2 + x + 2) + 3$$

$$3 = (x^3 + x + 1) - (x + 4)(x^2 + x + 2)$$

$$3 = (x^3 + x + 1) + (x + 4)(-x^2 - x - 2)$$

$$3 = (x^3 + x + 1) + (x + 4)(4x^2 + 4x + 3)$$

Now multiply both sides by 2 (the multiplicative inverse of 3 modulo 5, so that to get 1 on the left): $1 = (x^3 + x + 1)^2 + (x + 4)(3x^2 + 3x + 1)$

Thus we have
$$(x+4)(3x^2+3x+1) \equiv 1 \pmod{x^3+x+1}$$
, so $[x+4]^{-1} = 3x^2+3x+1$.

- 7. Since a rational root of $x^4 + 4x^3 + 8x + 32 = 0$ must be of the form $\frac{r}{s}$ where r|32 and s|1, the possible roots are ± 1 , ± 2 , ± 4 , ± 8 , ± 16 , and ± 32 . But notice that since all the coefficients are positive, a root cannot be positive. An easy check gives that -1 is not a root, but -2 is a root $(16 4 \cdot 8 8 \cdot 2 + 32 = 0)$. Therefore the polynomial is divisible by x + 2. Long division gives: $x^4 + 4x^3 + 8x + 32 = (x + 2)(x^3 + 2x^2 4x + 16)$. Now we have to find all roots of $x^3 + 2x^2 4x + 16$. Possible roots are -2, -4, -8, and -16. -2 is not a root, but -4 is a root (-64 + 32 + 16 + 16 = 0). Therefore we can divide by x + 4: $x^3 + 2x^2 4x + 16 = (x + 4)(x^2 2x + 4)$. Finally, since $x^2 2x + 4$ has no rational roots, the original polynomial has no other roots.
- 8. over \mathbb{Z} : $x^3 2$ is irreducible because it has no integer roots

over \mathbb{Q} : still irreducible because it has no rational roots either

over
$$\mathbb{R}$$
: $\left(x - \sqrt[3]{2}\right) \left(x^2 + \sqrt[3]{2}x + \sqrt[3]{4}\right)$

Now use the quadratic formula to find the roots of $x^2 + \sqrt[3]{2}x + \sqrt[3]{4}$:

over
$$\mathbb{C}$$
: $\left(x - \sqrt[3]{2}\right) \left(x + \frac{\sqrt[3]{2} + \sqrt[3]{2}\sqrt{3}i}{2}\right) \left(x + \frac{\sqrt[3]{2} - \sqrt[3]{2}\sqrt{3}i}{2}\right)$

over \mathbb{Z}_3 : 0 is not a root; 1 is not a root; 2 is a root, so divide by x-2 (or equivalently, x+1) over \mathbb{Z}_3 : $x^3-2=(x+1)(x^2-x+1)$. Now, x^2-x+1 also has a root, namely, 2 again. So divide by x-2=x+1 again, get $x^2+2x+1=(x+1)^2$. Therefore $x^3-2=(x+1)^3$ over \mathbb{Z}_3 .

Another way:
$$x^3 - 2 \equiv x^3 + 1 = (x+1)(x^2 - x + 1) \equiv (x+1)(x^2 + 2x + 1) = (x+1)^3 \pmod{3}$$
.

9. First list all the polynomials of degree 3 over \mathbb{Z}_2 . Since a polynomial of degree 3 is irreducible if and only if it has no roots, we check whether or not each of our polynomials

has a root: $x^3 \text{ has a root, } x=0$ $x^3+1 \text{ has a root, } x=1$ $x^3+x \text{ has a root, } x=0 \text{ (moreover, } x=1 \text{ is also a root, but we don't need that)}$ $x^3+x+1 \text{ has no roots}$ $x^3+x^2 \text{ has a root, } x=0 \text{ (also } x=1)$ $x^3+x^2+1 \text{ has no roots}$ $x^3+x^2+x \text{ has a root, } x=0$ $x^3+x^2+x \text{ has a root, } x=0$ $x^3+x^2+x \text{ has a root, } x=1$ So only $x^3+x+1 \text{ and } x^3+x^2+1 \text{ have no roots and therefore are irreducible.}$

- 10. The prime p = 5 divides all the coefficients of $3x^4 + 30x 60$ except the leading coefficient, and p^2 does not divide the free term. Therefore by Eisenstein's criterion, this polynomial is irreducible over \mathbb{Q} .
- 11. An element (r, s) of $R \oplus S$ is a unit (i.e. an invertible element) if and only if r is a unit in R and s is a unit in S. Similarly for the sum of three rings.

```
(a) \mathbb{Z}_6 has 2 units: 1 and 5.

\mathbb{Z}_8 has 4 units: 1, 3, 5, and 7.

Therefore \mathbb{Z}_6 \oplus \mathbb{Z}_8 has 8 units: (1, 1), (1, 3), (1, 5), (1, 7), (5, 1), (5, 3), (5, 5), (5, 7).
```

- (b) Units in \mathbb{Z} are ± 1 , thus $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ has 8 units: $(\pm 1, \pm 1, \pm 1)$.
- (c) Since \mathbb{R} is a field, every nonzero element is a unit. Thus $\mathbb{R} \oplus \mathbb{R}$ has infinitely many units, namely all elements of the form (a, b) where both a and b are nonzero.