Practice problems for Test 3

The actual test will consist of 6 problems. You will have 1 hour to complete the test.

1. Prove that the intersection of two normal subgroups is normal.
2. Let $G=G L_{2}(\mathbb{R})$, let H be the set of upper triangular invertible matrices, and let K be the set of upper triangular invertible matrices with 1's on the diagonal. Then $K \subseteq H \subseteq G$. Is H normal in G ? Is K normal in H ? Is K normal in G ?
3. Let $\mathbb{Z}_{2}(i)=\left\{a+b i \mid a, b \in \mathbb{Z}_{2}\right\}$ with addition and multiplication given by

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i)(c+d i)=(a b-b d)+(a d+b c) i
\end{gathered}
$$

where $a, b, c, d \in \mathbb{Z}_{2}$. Is $\mathbb{Z}_{2}(i)$ a ring? If so, is it a commutative ring? Is it an integral domain? Is it a field? (Justify your answers: say which axioms are or are not satisfied, and why.)
4. Find the quotient and remainder when $x^{5}+3 x+1$ is divided by $x^{2}+2$ over \mathbb{Q}.
5. Let $f(x)=x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2$ and $g(x)=x^{4}+3 x^{2}+3 x+6$.
(a) Find the greatest common divisor $d(x)$ of $f(x)$ and $g(x)$ over \mathbb{Z}_{7}.
(b) Find polynomials $a(x)$ and $b(x)$ in $\mathbb{Z}_{7}[x]$ such that $d(x)=a(x) f(x)+b(x) g(x)$.
6. Find the multiplicative inverse of $[x+4]$ in $\left.\mathbb{Z}_{5} /<x^{3}+x+1\right\rangle$.
7. Find all integer roots of $x^{4}+4 x^{3}+8 x+32=0$.
8. Find the irreducible factors of $x^{3}-2$ over $\mathbb{Z} ; \mathbb{Q} ; \mathbb{R} ; \mathbb{C} ; \mathbb{Z}_{3}$.
9. Find all irreducible polynomials of degree 3 over \mathbb{Z}_{2}.
10. Use Eisenstein's criterion to show that the polynomial $3 x^{4}+30 x-60$ is irreducible over \mathbb{Q}.
11. Find all units in
(a) $\mathbb{Z}_{6} \oplus \mathbb{Z}_{8}$
(b) $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$
(c) $\mathbb{R} \oplus \mathbb{R}$

