Project A (optional, for extra credit, up to 15 points)

Last day to submit solutions: 17 September 2008

The proof of the Chinese Remainder Theorem given in the book (p. 31) gives an algorithm to solve a system

$$
x \equiv a(\bmod n), \quad x \equiv b(\bmod m)
$$

where $(n, m)=1$.
Extend the techniques of the CRT to solve the following systems.
Note: These systems may have no solutions. Under which conditions on a, n, b, m, etc. does each system have a solution? Give an algorithm to solve each system when a solution exists. How many solutions does the system have modulo $m n\left(m n p, n_{1} \ldots n_{k}\right)$?

1. $x \equiv a(\bmod n), \quad x \equiv b(\bmod m), \quad x \equiv c(\bmod p)$ where $\operatorname{gcd}(n, m)=\operatorname{gcd}(n, p)=\operatorname{gcd}(m, p)=1$.
2. Use your algorithm in part (1) to solve
$x \equiv 1(\bmod 2), \quad x \equiv 2(\bmod 3), \quad x \equiv 3(\bmod 5)$.
3. $x \equiv a(\bmod n), \quad x \equiv b(\bmod m)$
where $(n, m)>1$ (hint: see exercise 23 on page 34).
4. Use your algorithm in part (3) to solve the following systems:
(a) $x \equiv 11(\bmod 15), \quad x \equiv 6(\bmod 10)$
(b) $x \equiv 11(\bmod 15), \quad x \equiv 8(\bmod 10)$
5. $x \equiv a(\bmod n), \quad x \equiv b(\bmod m), \quad x \equiv c(\bmod p)$, no restrictions on n, m, and p.
6. $\left\{\begin{array}{l}x \equiv a_{1}\left(\bmod n_{1}\right) \\ \cdots \\ x \equiv a_{k}\left(\bmod n_{k}\right)\end{array}\right.$
7. $\left\{\begin{array}{l}a_{1} x \equiv b_{1}\left(\bmod n_{1}\right) \\ \cdots \\ a_{k} x \equiv b_{k}\left(\bmod n_{k}\right)\end{array}\right.$
8. Do problem 20 on page 34.
9. Do problem 22 on page 34 .
