Math 151

Project B (optional, for extra credit)

Last day to submit solutions: 8 October 2008.
Note: Giving answers "yes" or "no" and giving examples without explanations is not sufficient. Provide proofs for all your statements.
Definition. An $n \times 1$ matrix $\left[\begin{array}{l}x_{1} \\ \vdots \\ x_{n}\end{array}\right]$ is called a vector of length n. The set of all vectors of length n with real entries is denoted by \mathbb{R}^{n}. The set of all vectors of length n with integer coefficients is denoted by \mathbb{Z}^{n}. If M is an $m \times n$ matrix and v is a vector of length n, then the product $M v$ is a vector of length m. The function $T_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ given by $T_{M}(v)=M v$ is called a linear transformation defined by the matrix M.

1. Let $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$, and $T_{M}: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation defined by M, that is, T_{M} is the multiplication by M on the left. Is T_{M} one-to-one? Is T_{M} onto?
2. For which (find a necessary and sufficient condition) matrices M in $\operatorname{Mat}_{n \times n}(\mathbb{R})$ is $T_{M}: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ one-to-one and onto?
3. Let $M=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ again. Notice that if $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{R}^{2}$ is such that x and y are integers, that is, if $\left[\begin{array}{l}x \\ y\end{array}\right] \in \mathbb{Z}^{2}$, then $M\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}x+2 y \\ 3 y+4 y\end{array}\right] \in \mathbb{Z}^{2}$. Thus we can restrict T_{M} onto \mathbb{Z}^{2}, and consider the map $T_{M}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$.
(a) Is $T_{M}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ one-to one?
(b) Is $T_{M}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ onto?
(c) If the answer in part (a) is "yes", give an example of a 2×2-matrix M^{\prime} s.t. $T_{M^{\prime}}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ is not one-to-one. If the answer in part (a) is "no", give an example of M^{\prime} s.t. $T_{M^{\prime}}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ is one-to-one.
(d) If the answer in part (b) is "yes", give an example of a 2×2-matrix $M^{\prime \prime}$ s.t. $T_{M^{\prime \prime}}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ is not onto. If the answer in part (b) is "no", give an example of $M^{\prime \prime}$ s.t. $T_{M^{\prime \prime}}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ is onto.
4. Let a, b, c, and d be integers, and let $M=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$.
(a) Find a necessary and sufficient condition on a, b, c, and d for $T_{M}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ to be one-to-one.
(b) Find a necessary and sufficient condition on a, b, c, and d for $T_{M}: \mathbb{Z}^{2} \rightarrow \mathbb{Z}^{2}$ to be onto.
5. Generalize your results in problem 4 to the case of $n \times n$ matrices with integer coefficients. Warning: this problem requires more linear algebra than reviewed in this class. It is probably too hard if you haven't taken Linear Algebra.
