- 1. Definitions, examples, basic properties:
 - (a) Algebraic structures
 - set
 - group (abelian)
 - ring (commutative)
 - integral domain
 - field
 - direct sum / product of two sets, groups, or rings
 - integer numbers (divisibility, quotient, remainder, primes, gcd, lcm, congruence modulo n)
 - polynomials (monic, irreducible, quotient, remainder, gcd, lcm)
 - (b) Substructures
 - subset
 - subgroup
 - subring
 - subfield
 - (c) Functions
 - well-defined
 - one-to-one (injection)
 - onto (surjection)
 - one-to-one correspondence (bijection)
 - permutation
 - homomorphism (of groups, rings, fields)
 - isomorphism (of groups, rings, fields)
 - kernel
 - image
 - inverse function
 - composition
- 2. Important theorems (a star indicates that you should know a proof)
 - Division algorithm (Th 1.1.3, p. 6)
 - GCD as a linear combination (Th 1.1.6, p. 8)
 - Fundamental theorem of arithmetic (Th 1.2.7, p. 18)
 - (*) Euclid's theorem about prime numbers (Th 1.2.8, p. 20)
 - (*) Inverse of an integer modulo n (Prop 1.3.4, p. 27)
 - Solution to a congruence $ax \equiv b \pmod{n}$ (Th 1.3.5, p. 28)
 - (*) Chinese remainder theorem (Th 1.3.6, p. 31)
 - Lagrange's theorem (Th 3.2.10, p. 110)
 - Decomposition of a finite abelian group (Th 3.5.5, p. 138)
 - Cayley's theorem (Th 3.6.2, p. 142)
 - (*) Fundamental homomorphism theorem for groups (Th 3.8.9, p. 172)
 - (*) Remainder theorem for polynomials (Th 4.1.9, p. 188)
 - Root of a polynomial (Cor 4.1.11, p. 189)
 - Unique factorization (Th 4.2.9, p. 199)
 - F[x]/< p(x) >is a field if p(x) is irreducible (Th 4.3.6, p. 206)
 - Kronecker's Theorem about an extension field (Th 4.3.8, p. 207)
 - Eisenstein's irreducibility criterion (Th 4.4.6, p. 214)
 - Fundamental homomorphism theorem for rings (Th 5.2.6, p. 244)