Math 151

Fall 2008

Test 1 - Solutions

1. Solve the congruence $9 x \equiv 2(\bmod 29)$.

First we will find $b \in \mathbb{Z}$ such that $9 b \equiv 1(\bmod 29)$. We will use the Euclidean algorithm: $29=9 \cdot 3+2, \quad 9=2 \cdot 4+1$ $1=9-2 \cdot 4=9-(29-9 \cdot 3) \cdot 4=9 \cdot 13+29 \cdot(-4)$ Thus $9 \cdot 13 \equiv 1(\bmod 29)$. Multiplying both sides of the given congruence by 13 , we have $13 \cdot 9 x \equiv 13 \cdot 2(\bmod 29)$, i.e. $\quad x \equiv 26(\bmod 29)$.
2. (a) List all the elements of \mathbb{Z}_{15}^{*}.

$$
[1]_{15},[2]_{15},[4]_{15},[7]_{15},[8]_{15},[11]_{15},[13]_{15},[14]_{15}
$$

(b) Find the multiplicative inverse of $[7]$ in \mathbb{Z}_{15}^{*}.

Since $[7]_{15}^{2}=[49]_{15}=[4]_{15}, \quad[7]_{15}^{3}=[28]_{15}=[13]_{15}, \quad[7]_{15}^{4}=[91]_{15}=[1]_{15}$, the multiplicative inverse of $[7]$ in \mathbb{Z}_{15}^{*} is $[13]_{15}$.
3. Let $f: \mathbb{Z}_{15} \rightarrow \mathbb{Z}_{3}$ be given by $f\left([x]_{15}\right)=[2 x]_{3}$.
(a) Show that f is a well-defined function.

If $\left[x_{1}\right]_{15}=\left[x_{2}\right]_{15}$, then $x_{1} \equiv x_{2}(\bmod 15)$. Then $2 x_{1} \equiv 2 x_{2}(\bmod 15)$, therefore $2 x_{1} \equiv 2 x_{2}(\bmod 3)$, i.e. $f\left(\left[x_{1}\right]_{15}\right)=f\left(\left[x_{2}\right]_{15}\right)$, so f is well-defined.
(b) Is f one-to-one?

No. For example, $f\left([0]_{15}\right)=[0]_{3}=[6]_{3}=f\left([3]_{15}\right)$ while $[0]_{15} \neq[3]_{15}$.
(c) Is f onto?

Yes. Every element of \mathbb{Z}_{3} is in the image: $[0]_{3}=f\left([0]_{15}\right),[1]_{3}=[4]_{3}=$ $f\left([2]_{15}\right),[2]_{3}=f\left([1]_{15}\right)$.
4. Consider the set of real numbers \mathbb{R}. For x and y in \mathbb{R}, let $x \sim y$ if $(x+y) \in \mathbb{Z}$.
(a) Is \sim reflexive?

No. For example, if $x=0.1$, then $(x+x) \notin \mathbb{Z}$, therefore $x \nsim x$.
(b) Is \sim symmetric?

Yes. If $x \sim y$, then $(x+y) \in \mathbb{Z}$, then $(y+x) \in \mathbb{Z}$, so $y \sim x$.
(c) Is \sim transitive?

No. For example, if $x=0.1, y=0.9$, and $z=0.1$, then $(x+y) \in \mathbb{Z}$ and $(y+z) \in \mathbb{Z}$, but $(x+z) \notin \mathbb{Z}$. So $x \sim y$ and $y \sim z$, but $x \nsim z$.
(d) Is \sim an equivalence relation?

No, since it does not have all three of the above properties.
5. Let $\sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 6 & 3 & 2\end{array}\right)$ and $\tau=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1\end{array}\right)$.
(a) Find $\tau \sigma$.
$\tau \sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 4 & 3\end{array}\right)$.
(b) Write σ as a product of disjoint cycles.
$\sigma=(1,4,6,2)(3,5)$.
6. (Optional) Prove that the inverse of an even permutation is an even permutation, and that the inverse of an odd permutation is an odd permutation.
Let σ be an even permutation, then σ can be written as a product of an even number of transpositions, say, $\sigma=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \ldots\left(a_{n}, b_{n}\right)$ (where n is even). Then $\sigma^{-1}=\left(a_{n}, b_{n}\right)^{-1} \ldots\left(a_{2}, b_{2}\right)^{-1}\left(a_{1}, b_{1}\right)^{-1}$. Since the order of each transposition is 2 , each transposition is its own inverse, so $\sigma^{-1}=\left(a_{n}, b_{n}\right) \ldots\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$. Thus σ^{-1} can be written as a product of an even number of transpositions, i.e. is an even permutation.
Similartly, if σ is an odd permutation, then σ can be written as a product of an odd number of transpositions, say, $\sigma=\left(a_{1}, b_{1}\right)\left(a_{2}, b_{2}\right) \ldots\left(a_{n}, b_{n}\right)$ (where n is odd). Then $\sigma^{-1}=\left(a_{n}, b_{n}\right)^{-1} \ldots\left(a_{2}, b_{2}\right)^{-1}\left(a_{1}, b_{1}\right)^{-1}=\left(a_{n}, b_{n}\right) \ldots\left(a_{2}, b_{2}\right)\left(a_{1}, b_{1}\right)$. Thus σ^{-1} can be written as a product of an odd number of transpositions, i.e. is an odd permutation.

