Math 151

Fall 2008

Test 1 - Solutions

- Solve the congruence 9x ≡ 2 (mod 29). First we will find b ∈ Z such that 9b ≡ 1 (mod 29). We will use the Euclidean algorithm: 29 = 9 ⋅ 3 + 2, 9 = 2 ⋅ 4 + 1 1 = 9 - 2 ⋅ 4 = 9 - (29 - 9 ⋅ 3) ⋅ 4 = 9 ⋅ 13 + 29 ⋅ (-4) Thus 9 ⋅ 13 ≡ 1 (mod 29). Multiplying both sides of the given congruence by 13, we have 13 ⋅ 9x ≡ 13 ⋅ 2 (mod 29), i.e. x ≡ 26 (mod 29).
- 2. (a) List all the elements of \mathbb{Z}_{15}^* . [1]₁₅, [2]₁₅, [4]₁₅, [7]₁₅, [8]₁₅, [11]₁₅, [13]₁₅, [14]₁₅.
 - (b) Find the multiplicative inverse of [7] in \mathbb{Z}_{15}^* . Since $[7]_{15}^2 = [49]_{15} = [4]_{15}$, $[7]_{15}^3 = [28]_{15} = [13]_{15}$, $[7]_{15}^4 = [91]_{15} = [1]_{15}$, the multiplicative inverse of [7] in \mathbb{Z}_{15}^* is $[13]_{15}$.
- 3. Let $f : \mathbb{Z}_{15} \to \mathbb{Z}_3$ be given by $f([x]_{15}) = [2x]_3$.
 - (a) Show that f is a well-defined function. If $[x_1]_{15} = [x_2]_{15}$, then $x_1 \equiv x_2 \pmod{15}$. Then $2x_1 \equiv 2x_2 \pmod{15}$, therefore $2x_1 \equiv 2x_2 \pmod{3}$, i.e. $f([x_1]_{15}) = f([x_2]_{15})$, so f is well-defined.
 - (b) Is f one-to-one? No. For example, $f([0]_{15}) = [0]_3 = [6]_3 = f([3]_{15})$ while $[0]_{15} \neq [3]_{15}$.
 - (c) Is f onto? Yes. Every element of \mathbb{Z}_3 is in the image: $[0]_3 = f([0]_{15}), [1]_3 = [4]_3 = f([2]_{15}), [2]_3 = f([1]_{15}).$
- 4. Consider the set of real numbers \mathbb{R} . For x and y in \mathbb{R} , let $x \sim y$ if $(x + y) \in \mathbb{Z}$.
 - (a) Is ~ reflexive? No. For example, if x = 0.1, then $(x + x) \notin \mathbb{Z}$, therefore $x \not\sim x$.
 - (b) Is ~ symmetric? Yes. If $x \sim y$, then $(x + y) \in \mathbb{Z}$, then $(y + x) \in \mathbb{Z}$, so $y \sim x$.
 - (c) Is ~ transitive? No. For example, if x = 0.1, y = 0.9, and z = 0.1, then $(x + y) \in \mathbb{Z}$ and $(y + z) \in \mathbb{Z}$, but $(x + z) \notin \mathbb{Z}$. So $x \sim y$ and $y \sim z$, but $x \not\sim z$.
 - (d) Is ~ an equivalence relation?No, since it does not have all three of the above properties.
- 5. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 4 & 1 & 5 & 6 & 3 & 2 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 & 6 & 1 \end{pmatrix}$.
 - (a) Find $\tau \sigma$. $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 2 & 6 & 1 & 4 & 3 \end{pmatrix}$.
 - (b) Write σ as a product of disjoint cycles. $\sigma = (1, 4, 6, 2)(3, 5).$

6. (Optional) Prove that the inverse of an even permutation is an even permutation, and that the inverse of an odd permutation is an odd permutation.

Let σ be an even permutation, then σ can be written as a product of an even number of transpositions, say, $\sigma = (a_1, b_1)(a_2, b_2) \dots (a_n, b_n)$ (where n is even). Then $\sigma^{-1} = (a_n, b_n)^{-1} \dots (a_2, b_2)^{-1}(a_1, b_1)^{-1}$. Since the order of each transposition is 2, each transposition is its own inverse, so $\sigma^{-1} = (a_n, b_n) \dots (a_2, b_2)(a_1, b_1)$. Thus σ^{-1} can be written as a product of an even number of transpositions, i.e. is an even permutation.

Similarly, if σ is an odd permutation, then σ can be written as a product of an odd number of transpositions, say, $\sigma = (a_1, b_1)(a_2, b_2) \dots (a_n, b_n)$ (where n is odd). Then $\sigma^{-1} = (a_n, b_n)^{-1} \dots (a_2, b_2)^{-1}(a_1, b_1)^{-1} = (a_n, b_n) \dots (a_2, b_2)(a_1, b_1)$. Thus σ^{-1} can be written as a product of an odd number of transpositions, i.e. is an odd permutation.