Math 151
Spring 2004

Test 1

1. (4 pts) Let $a, b, c \in \mathbb{Z}, c \neq 0$. Prove that $b c|a c \Leftrightarrow b| a$.
2. $(5 \mathrm{pts})$ Solve the congruence $30 x \equiv 18(\bmod 27)$.
3. (6 pts) Find
(a) the multiplicative order
(b) the multiplicative inverse
of [3] in \mathbb{Z}_{11}^{*}.
4. (4 pts) Is $f: \mathbb{Z}_{12} \rightarrow \mathbb{Z}_{8}$ given by $f\left([x]_{12}\right)=[3 x]_{8}$ a well-defined function? Explain why or why not.
5. (5 pts) Consider the set of real numbers \mathbb{R}. For x and y in \mathbb{R}, let $x \sim y$ if $(x-y) \in \mathbb{Z}$. Show that \sim is an equivalence relation, and describe the equivalence classes.
6. (6 pts) Let $\sigma=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4\end{array}\right)$ and $\tau=\left(\begin{array}{lllll}1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5\end{array}\right)$.
(a) Find $\tau \sigma$.
(b) Draw the associated diagram for σ.
(c) Write σ as a product of disjoint cycles.

Optional (for extra credit, 3 pts): Does there exist an integer number m such that for any prime number $p, m \equiv p-1(\bmod p)$? If such a number exists, find it. If not, prove that there is no such number.

