Math 151

Spring 2004

Test 1

- 1. (4 pts) Let $a, b, c \in \mathbb{Z}, c \neq 0$. Prove that $bc|ac \Leftrightarrow b|a$.
- 2. (5 pts) Solve the congruence $30x \equiv 18 \pmod{27}$.
- 3. (6 pts) Find
 - (a) the multiplicative order
 - (b) the multiplicative inverse
 - of [3] in \mathbb{Z}_{11}^* .
- 4. (4 pts) Is $f : \mathbb{Z}_{12} \to \mathbb{Z}_8$ given by $f([x]_{12}) = [3x]_8$ a well-defined function? Explain why or why not.
- 5. (5 pts) Consider the set of real numbers \mathbb{R} . For x and y in \mathbb{R} , let $x \sim y$ if $(x y) \in \mathbb{Z}$. Show that \sim is an equivalence relation, and describe the equivalence classes.

6. (6 pts) Let
$$\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$$
 and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.

- (a) Find $\tau\sigma$.
- (b) Draw the associated diagram for σ .
- (c) Write σ as a product of disjoint cycles.

Optional (for extra credit, 3 pts): Does there exist an integer number m such that for any prime number p, $m \equiv p - 1 \pmod{p}$? If such a number exists, find it. If not, prove that there is no such number.