Math 151

Fall 2008

Test 2 - Solutions

1. (a) Find the order of each group, whether it is abelian, and whether it is cyclic. Provide brief explanations (you may refer to a theorem or an example in the book).

group	order	abelian?	cyclic?
\mathbb{Z}_{12}	12	yes	yes
	$ \mathbb{Z}_n = n$	by example 3.1.3	by example 3.2.8
$\mathbb{Z}_3 \times \mathbb{Z}_4$	12	yes	yes
	$3 \times 4 = 12$	both \mathbb{Z}_3 and \mathbb{Z}_4 are	isomorphic to \mathbb{Z}_{12} by
		abelian	theorem 3.5.5 (or be-
			cause $(1,1)$ is a gen-
			erator)
$\mathbb{Z}_2 \times \mathbb{Z}_6$	12	yes	no
	$2 \times 6 = 12$	both \mathbb{Z}_2 and \mathbb{Z}_6 are	contains no element
		abelian	of order 12
\mathbb{Z}_{12}^{\times}	4	yes	no
	elements: 1, 5, 7, 11	by example 3.1.4	contains no element
	$ (or \mathbb{Z}_{12}^{\times} = \phi(12) =$		of order 4
	4)		
S_{12}	12!	no	no
	$ S_n = n!$	$e.g. \qquad (123)(12) \neq$	every cyclic group is
		(12)(123)	abelian
A_4	12	no	no
	$ A_n = n!/2 (or by)$	$e.g. \qquad (123)(124) \neq$	every cyclic group is
	problem 13 in sec-	(124)(123)	abelian
	tion 3.6)		
$GL_{12}(\mathbb{R})$	∞	no	no
	for each $x \in \mathbb{R}$,	matrix multiplication	every cyclic group is
	$xI_{12} \in GL_{12}(\mathbb{R})$	is not commutative	abelian

- (b) Are any of the above groups isomorphic? (Explain.)
 Only groups that have the same order and same properties (either both abelian or both nonabelian; either both cyclic or both noncyclic) can be isomorphic. Thus among the above groups, only Z₁₂ and Z₃ × Z₄ be isomorphic. This two groups are indeed isomorphic by Proposition 3.4.5.
- 2. Let $\phi(\mathbb{Z}_2 \times \mathbb{Z}_4) \to \mathbb{Z}_2$ be defined by $\phi([a]_2, [b]_4) = [a+b]_2$.
 - (a) Show that ϕ is a homomorphism. Let $([a]_2, [b]_4), ([c]_2, [d]_4) \in \mathbb{Z}_2 \times \mathbb{Z}_4$. Then $\phi(([a]_2, [b]_4) + ([c]_2, [d]_4)) = \phi([a + c]_2, [b + d]_4) = [(a + c) + (b + d)]_2 = [(a + b) + (c + d)]_2 = [a + b]_2 + [c + d]_2 = \phi([a]_2, [b]_4) + \phi([c]_2, [d]_4).$
 - (b) Find the kernel of ϕ .

 $ker(\phi) = \{ ([a]_2, [b]_4) \in \mathbb{Z}_2 \times \mathbb{Z}_4 \mid [a+b]_2 = [0]_2 \} = \{ ([a]_2, [b]_4) \in \mathbb{Z}_2 \times \mathbb{Z}_4 \mid a+b \equiv 0 \pmod{2} \} = \{ ([0]_2, [0]_4), ([0]_2, [2]_4), ([1]_2, [1]_4), ([1]_2, [3]_4) \}.$

- 3. Prove that \mathbb{Z} is a normal subgroup of \mathbb{R} . For any $a \in \mathbb{Z}$ and $b \in \mathbb{R}$, $b + a + (-b) = a \in \mathbb{Z}$, thus \mathbb{Z} is normal.
- 4. In D_6 , let a and b denote the counterclockwise rotation through an angle of 60 degrees and the flip about the vertical line, respectively.
 - (a) Give a geometric description of the rigid motion *ab*. (Is it a rotation? If so, through what angle? Or is it a flip? If so, about what line? Or is it some other rigid motion?)

By performing first b and then a as shown below, we see that ab is the flip about line l.

(b) What is the order of ab? The order of ab is 2 (since the order of any flip is 2).

- 5. Let G be any group. Define a function $\phi: G \to G$ by $\phi(x) = x^{-1}$ for all $x \in G$.
 - (a) Prove that φ is one-to-one and onto.
 If φ(a) = φ(b), i.e. a⁻¹ = b⁻¹, then aa⁻¹b = ab⁻¹b. Therefore b = a. Thus φ is one-to-one.
 For any y ∈ G, let x = y⁻¹. Then φ(x) = x⁻¹ = (y⁻¹)⁻¹ = y. Thus φ is onto.
 - (b) Give an example of a group G for which the function ϕ defined above is an isomorphism (and prove that it is). Let $G = \mathbb{R}^{\times}$. Then $\phi(ab) = (ab)^{-1} = a^{-1}b^{-1} = \phi(a)\phi(b)$. Since ϕ is also one-to-one and onto as shown above, ϕ is an isomorphism.

Optional: Prove that any group of order 24 contains at least one element of order 2.

Let G be a group of order 24. Possible orders of elements of G are divisors of 24: 1, 2, 3, 4, 6, 8, 12, and 24. The only element of order 1 is the identity element. If there is an element of an even order, say a of order 2k (where $k \in \mathbb{Z}$), then a^k has order 2 since $(a^k)^2 = a^{2k} = e$. If there is no element of any even order, then all elements except e must have order 3. However, we will show that this case is impossible. For each element a of order 3, consider the pair $\{a, a^2\}$ (note that $a \neq a^2$). We will show that such pairs are disjoint. Indeed, if for some elements a and b we have a = b, then $a^2 = b^2$, so $\{a, a^2\} = \{b, b^2\}$; if $a = b^2$, then $a^2 = b^4 = b^3b = eb = b$, so $\{a, a^2\} = \{b, b^2\}$; if $a^2 = b$, then $a = ea = a^3a = a^4 = (a^2)^2 = b^2$, and $\{a, a^2\} = \{b, b^2\}$; finally, if $a^2 = b^2$, then $a = a^4 = b^4 = b$, so again $\{a, a^2\} = \{b, b^2\}$. But 23 elements (i.e. all but the identity element) cannot form disjoint pairs. We have a contradiction. Thus there must be at least one element of an even order.