Math 151

Fall 2008

Test 3 - Solutions

1. Consider the group $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$ and its subgroup $<(2,4)>$. Find the order of each of the following:
(a) the group $\mathbb{Z}_{6} \times \mathbb{Z}_{8}$,
$\left|\mathbb{Z}_{6} \times \mathbb{Z}_{8}\right|=\left|\mathbb{Z}_{6}\right| \cdot\left|\mathbb{Z}_{8}\right|=6 \cdot 8=48$.
(b) the subgroup $<(2,4)>$,
$<(2,4)>=\{(0,0),(2,4),(4,0),(0,4),(2,0),(4,4)$, so $|<(2,4)>|=6$.
(c) the factor group $\left(\mathbb{Z}_{6} \times \mathbb{Z}_{8}\right) /<(2,4)>$.
$\left|\left(\mathbb{Z}_{6} \times \mathbb{Z}_{8}\right) /<(2,4)>\right|=\frac{\left|\mathbb{Z}_{6} \times \mathbb{Z}_{8}\right|}{|<(2,4)>|}=\frac{48}{6}=8$.
2. Find the greatest common divisor of $x^{4}+x^{3}+2 x^{2}+x+1$ and $x^{3}+2$ over \mathbb{Z}_{3}. $x^{4}+x^{3}+2 x^{2}+x+1=\left(x^{3}+2\right)(x+1)+\left(2 x^{2}+2 x+2\right)$, $x^{3}+2=\left(2 x^{2}+2 x+2\right)(2 x+1)$,
so the greatest common divisor is the monic polynomial that is a multiple of $2 x^{2}+2 x+2$, i.e. $x^{2}+x+1$.
3. Let $f(x)=x^{2}+100 x+n$.
(a) Give an example of an integer n such that $f(x)$ is reducible over \mathbb{Q}. (Show that $f(x)$ is reducible for this value of n.)
If $n=0$, then $f(x)=x^{2}+100 x=x(x+100)$ is reducible.
(b) Give an example of an integer n such that $f(x)$ is irreducible over \mathbb{Q}. (Prove that $f(x)$ is irreducible for this value of n.)
If $n=2$, then $f(x)=x^{2}+100 x+2$ is irreducible by Eisenstein's irreducibility criterion (with $p=2$).
4. Recall that \mathbb{R} is a group (under addition), a ring, and a field. Consider the subset $\mathbb{Z}[\sqrt{5}]=\{a+b \sqrt{5} \mid a, b \in \mathbb{Z}\}$ of \mathbb{R}.
(a) Is $\mathbb{Z}[\sqrt{5}]$ a subgroup of \mathbb{R} ? Explain why or why not.

Yes. It is closed under addition since $(a+b \sqrt{5})+(c+d \sqrt{5})=(a+c)+(b+d) \sqrt{5}$. It contains $0=0+0 \sqrt{5}$, and it is closed under the additive inverses since for any $a+b \sqrt{5} \in \mathbb{Z}[\sqrt{5}]$, its additive inverse is $(-a)+(-b) \sqrt{5} \in \mathbb{Z}[\sqrt{5}]$.
(b) Is $\mathbb{Z}[\sqrt{5}]$ a subring of \mathbb{R} ? Explain why or why not.

Yes. In addition to the properties proved in part (a), the set is closed under multiplication since $(a+b \sqrt{5})(c+d \sqrt{5})=(a c+5 b d)+(a d+b c) \sqrt{5}$, and contains $1=1+0 \sqrt{5}$.
(c) Is $\mathbb{Z}[\sqrt{5}]$ a subfield of \mathbb{R} ? Explain why or why not.

No. The set is not closed under multiplicative inverses, e.g. the multiplicative inverse of $0+1 \sqrt{5} \in \mathbb{Z}[\sqrt{5}]$ is $0+\frac{1}{5} \sqrt{5} \notin \mathbb{Z}[\sqrt{5}]$.
5. Let R and S be rings, and let $\phi: R \rightarrow S$ and $\theta: R \rightarrow S$ be ring homomorphisms. Show that $\{r \in R \mid \phi(r)=\theta(r)\}$ is a subring of R.
Let $K=\{r \in R \mid \phi(r)=\theta(r)\}$. First we will show that K is closed under addition and multiplication. For any $a, b \in K$, we have $\phi(a)=\theta(a)$ and $\phi(b)=\theta(b)$. Then $\phi(a+b)=\phi(a)+\phi(b)=\theta(a)+\theta(b)=\theta(a+b)$ and $\phi(a b)=\phi(a) \phi(b)=\theta(a) \theta(b)=$ $\theta(a b)$, so $a+b, a b \in K$. Next, K contains 0 and 1 since $\phi(0)=0=\theta(0)$ and $\phi(1)=1=\theta(1)$. Finally, K is closed under additive inverses since for any $a \in K, \phi(-a)=-\phi(a)=-\theta(a)=\theta(-a)$, so $-a \in K$. Thus K is a subring of R.

Optional Give an example of a non-commutative ring with exactly 10000 elements. (One point will be given for an example of a non-commutative ring of any finite order.)
$\operatorname{Mat}_{2 \times 2}\left(\mathbb{Z}_{10}\right)$ is a ring with 10^{4} elements. It is non-commutative because e.g.
$\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]$ and $\left[\begin{array}{ll}1 & 0 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}1 & 1 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$.

