Test 3 - Solutions

1. Find the greatest common divisor of $f(x) = 6x^2 + 4x - 2$ and $g(x) = 3x^3 - 4x^2 - 2x + 1$ over R.

$$3x^3 - 4x^2 - 2x + 1 = (6x^2 + 4x - 2)(\frac{1}{2}x - 1) + (3x - 1)$$

$$6x^2 + 4x - 2 = (3x - 1)(2x + 2)$$
so $gcd(f(x), g(x))$ is the multiple of $3x - 1$ that is monic, i.e. $x - \frac{1}{3}$.

- 2. Is $x^3 2$ irreducible
 - (a) over \mathbb{Q} ?

 Yes because it does not have rational roots.
 - (b) over \mathbb{Z}_5 ? No: $x^3 - 2 \equiv x^3 - 27 = (x - 3)(x^2 + 3x + 9) \equiv (x + 2)(x^2 + 3x + 4) \pmod{5}$. Or, could find the root x = 3, and then $x^3 - 2$ factors as (x - 3)g(x) for some polynomial $g(x) \in \mathbb{Z}_5[x]$.
- 3. Can a field have exactly
 - (a) 1 element?

 No because the multiplicative identity must be different from the additive identity, so a field has at least 2 elements.
 - (b) 2 elements? Yes. \mathbb{Z}_2 is a field.
- 4. Is the union of 2 ideals always an ideal? Prove or give a counterexample. No. Counterexample: Ring $R = \mathbb{Z}$, ideals $I = 2\mathbb{Z}$ and $J = 3\mathbb{Z}$. The union $I \cup J$ is not an ideal because e.g. it is not closed under addition: $2 \in I$, so $2 \in I \cup J$; $3 \in J$, so $3 \in I \cup J$; but $2 + 3 = 5 \notin I \cup J$ because $5 \notin I$ and $5 \notin J$.
- 5. Find the multiplicative inverse of [x] in \mathbb{Z}_3 / $< x^2 + x + 2 >$.

$$x^{2} + x + 2 = x(x + 1) + 2$$

 $x = 2(2x) \pmod{3!}$
 $So \ 2 = (x^{2} + x + 2) - x(x + 1)$
 $2 = (x^{2} + x + 2) + x(2x + 2)$
 $Multiply \ both \ sides \ by \ 2:$
 $1 = (x^{2} + x + 2)2 + x(x + 1)$
 $Therefore \ x(x + 1) \equiv 1 \pmod{x^{2} + x + 2}$
 $i.e. \ [x]^{-1} = [x + 1].$

6. Let R and S be rings, and let $f: R \to S$ be an onto ring homomorphism. Prove that if R is commutative then so is S.

Let $a, b \in S$. Since f is onto, there exist $x, y \in R$ such that a = f(x) and b = f(y). Then ab = f(x)f(y) = f(xy) = f(yx) = f(y)f(x) = ba, so S is commutative.

Optional: Is $\mathbb{Z}[x]/\langle x^2+2\rangle$ a field?

No. Every congruence class has a unique representative of the form ax + b. The class of x has no inverse because $x(ax+b) = ax^2 + bx = ax^2 + 2a + bx - 2a = a(x^2+2) + bx - 2a \equiv bx - 2a \not\equiv 1 \pmod{x^2+2}$ for any a and b.