Practice problems for Test 3

The actual test will consist of 6 problems. You will have 1 hour to complete the test.

1. Let $\mathbb{Z}_{2}(i)=\left\{a+b i \mid a, b \in \mathbb{Z}_{2}\right\}$ with addition and multiplication given by

$$
\begin{gathered}
(a+b i)+(c+d i)=(a+c)+(b+d) i \\
(a+b i)(c+d i)=(a b-b d)+(a d+b c) i
\end{gathered}
$$

where $a, b, c, d \in \mathbb{Z}_{2}$. Is $\mathbb{Z}_{2}(i)$ a ring? If so, is it a commutative ring? Does it have a multiplicative inverse? Is it an integral domain? Is it a field? (Justify your answers: say which axioms are or are not satisfied, and why.)
2. Find the quotient and remainder when $x^{5}+3 x+1$ is divided by $x^{2}+2$ over \mathbb{Q}.
3. Let $f(x)=x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2$ and $g(x)=x^{4}+3 x^{2}+3 x+6$.
(a) Find the greatest common divisor $d(x)$ of $f(x)$ and $g(x)$ over \mathbb{Z}_{7}.
(b) Find polynomials $a(x)$ and $b(x)$ in $\mathbb{Z}_{7}[x]$ such that $d(x)=a(x) f(x)+b(x) g(x)$.
4. Find the multiplicative inverse of $[x+4]$ in $\mathbb{Z}_{5} /<x^{3}+x+1>$.
5. Find all integer roots of $x^{4}+4 x^{3}+8 x+32=0$.

6 . Find the irreducible factors of $x^{3}-2$ over $\mathbb{Z} ; \mathbb{Q} ; \mathbb{R} ; \mathbb{C} ; \mathbb{Z}_{3}$.
7. Find all irreducible polynomials of degree 3 over \mathbb{Z}_{2}.
8. Use Eisenstein's criterion to show that the polynomial $3 x^{4}+30 x-60$ is irreducible over \mathbb{Q}.
9. (a) Give an example of a commutative ring R with a multiplicative identity e, and a subring S of R with a multiplicative identity $e^{\prime} \neq e$.
(b) Prove that if R is an integral domain with a multiplicative identity e, and S is a subring of R with a multiplicative identity e^{\prime} then $e=e^{\prime}$.
10. Find all units in $\mathbb{Z}_{6} \oplus \mathbb{Z}_{8}$.
11. Let R be a commutative ring with ideals I and J. Let

$$
I+J=\{x \in R \mid x=a+b \text { for some } a \in I, b \in J\}
$$

Show that $I+J$ is an ideal of R.

