Practice problems for Test 3

The actual test will consist of 6 problems. You will have 1 hour to complete the test.

1. Let $\mathbb{Z}_2(i) = \{a + bi \mid a, b \in \mathbb{Z}_2\}$ with addition and multiplication given by

$$(a+bi) + (c+di) = (a+c) + (b+d)i$$

$$(a+bi)(c+di) = (ab-bd) + (ad+bc)i$$

where $a, b, c, d \in \mathbb{Z}_2$. Is $\mathbb{Z}_2(i)$ a ring? If so, is it a commutative ring? Does it have a multiplicative inverse? Is it an integral domain? Is it a field? (Justify your answers: say which axioms are or are not satisfied, and why.)

- 2. Find the quotient and remainder when $x^5 + 3x + 1$ is divided by $x^2 + 2$ over \mathbb{Q} .
- 3. Let $f(x) = x^5 + 4x^4 + 6x^3 + 6x^2 + 5x + 2$ and $g(x) = x^4 + 3x^2 + 3x + 6$.
 - (a) Find the greatest common divisor d(x) of f(x) and g(x) over \mathbb{Z}_7 .
 - (b) Find polynomials a(x) and b(x) in $\mathbb{Z}_7[x]$ such that d(x) = a(x)f(x) + b(x)g(x).
- 4. Find the multiplicative inverse of [x + 4] in $\mathbb{Z}_5/\langle x^3 + x + 1 \rangle$.
- 5. Find all integer roots of $x^4 + 4x^3 + 8x + 32 = 0$.
- 6. Find the irreducible factors of $x^3 2$ over \mathbb{Z} ; \mathbb{Q} ; \mathbb{R} ; \mathbb{C} ; \mathbb{Z}_3 .
- 7. Find all irreducible polynomials of degree 3 over \mathbb{Z}_2 .
- 8. Use Eisenstein's criterion to show that the polynomial $3x^4 + 30x 60$ is irreducible over \mathbb{Q} .
- 9. (a) Give an example of a commutative ring R with a multiplicative identity e, and a subring S of R with a multiplicative identity $e' \neq e$.
 - (b) Prove that if R is an integral domain with a multiplicative identity e, and S is a subring of R with a multiplicative identity e' then e = e'.
- 10. Find all units in $\mathbb{Z}_6 \oplus \mathbb{Z}_8$.
- 11. Let R be a commutative ring with ideals I and J. Let

$$I + J = \{ x \in R \mid x = a + b \text{ for some } a \in I, b \in J \}.$$

Show that I + J is an ideal of R.