Test 1 - Solutions

1. Let $a, b, c \in \mathbb{Z}, c \neq 0$. Prove that $b|ac \iff b|a$.

 (\Rightarrow) If $b|ac$ then $ac = mb$ for some integer m. Since $c \neq 0$, $a = mb$, i.e. $b|a$.

 (\Leftarrow) If $b|a$ then $a = mb$ for some integer m. Then $ac = mbc$, i.e. $b|ac$.

2. Solve the congruence $30x \equiv 18 \pmod{27}$.
 Since $(30,27) = 3|18$, the congruence has 3 distinct solutions modulo 27, which are congruent modulo 9.

 Divide by 3: $10x \equiv 6 \pmod{9}$. Now there are at least 2 different approaches.

 Approach 1: Since $10 \equiv 1 \pmod{9}$, the equation is equivalent to $x \equiv 6 \pmod{9}$.

 Approach 2 (the more standard one): Now $(10,9) = 1$, so the congruence has a unique solution modulo 9. To find a solution, we will find integers a and b such that $10a = 6 + 9b$, or $6 = 10a + 9(-b)$.

 First, $1 = 10 + 9(-1)$ can be found using the Euclidean algorithm or simply by observation since the numbers are small. Now multiply both sides by 6: $6 = 10 \cdot 6 + 9(-6)$.
 Then $10 \cdot 6 \equiv 6 \pmod{9}$, so $x = 6$ is a solution, so the answer is $x \equiv 6 \pmod{9}$.

3. Find

 (a) the multiplicative order
 (b) the multiplicative inverse

 of $[3]$ in \mathbb{Z}_{11}^*

 $3^2 = 9$

 $3^3 = 27 \equiv 5 \pmod{11}$

 $3^4 = 5 \cdot 3 = 15 \equiv 4 \pmod{11}$

 $3^5 \equiv 4 \cdot 3 = 12 \equiv 1 \pmod{11}$

 Therefore the multiplicative order of $[3]_{11}$ is 5, and the multiplicative inverse of $[3]_{11}$ is $[4]_{11}$.

4. Is $f : \mathbb{Z}_{12} \to \mathbb{Z}_8$ given by $f([x]_{12}) = [3x]_8$ a well-defined function? Explain why or why not.

 No, because e.g. $[0]_{12} = [12]_{12}$ but $f([0]_{12}) = [0]_8$ and $f([12]_{12}) = [3 \cdot 12]_8 = [36]_8 = [4]_8$.

5. Consider the set of real numbers \mathbb{R}. For x and y in \mathbb{R}, let $x \sim y$ if $(x - y) \in \mathbb{Z}$. Show that \sim is an equivalence relation, and describe the equivalence classes.

 Reflexive law: for each x, $x \sim x$ since $x - x = 0 \in \mathbb{Z}$.

 Symmetric law: if $x \sim y$, then $(x - y) \in \mathbb{Z}$, then $(y - x) = -(x - y) \in \mathbb{Z}$, so $y \sim x$.

 Transitive law: if $x \sim y$ and $y \sim z$, then $(x - y) \in \mathbb{Z}$ and $(y - z) \in \mathbb{Z}$, then $x - z = (x - y) + (y - z) \in \mathbb{Z}$, so $x \sim z$.

 The equivalence class of x is the set of all real numbers y such that $y - x = m \in \mathbb{Z}$, i.e. $y = x + m$:

 $[x] = \{ \ldots, x-3, x-2, x-1, x, x+1, x+2, x+3, \ldots \}$. There are infinitely many equivalence classes, one class for each number $a \in [0,1)$.

6. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix}$ and $\tau = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 4 & 3 & 1 & 2 & 5 \end{pmatrix}$.

 (a) Find $\tau \sigma$.
 $\tau \sigma = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 5 & 4 & 3 & 2 \end{pmatrix}$

 (b) Draw the associated diagram for σ.

 (c) Write σ as a product of disjoint cycles.
 $\sigma = (13)(254)$

Optional: Does there exist an integer number m such that for any prime number p, $m \equiv p - 1 \pmod{p}$?

If such a number exists, find it. If not, prove that there is no such number.

Yes. $m = -1$ satisfies that property.