Practice problems for Test 1
 Solutions

1. (a) $85=51 \cdot 1+34$
$51=34 \cdot 1+17$
$34=17 \cdot 2$
So $(51,85)=17$.
(b) $17=51-34 \cdot 1=51-(85-51 \cdot 1) \cdot 1=51-85+51 \cdot 1=51 \cdot 2-85$

Thus $d=51 \cdot 2+85(-1)$, so $m=2$ and $n=-1$.
2. (\Rightarrow)
$b \mid a \Rightarrow a=b c$ for some integer c.
Then $x \in a \mathbb{Z} \Rightarrow x=a m$ for some $m \in \mathbb{Z} \Rightarrow x=b c m=b(c m) \Rightarrow x \in b \mathbb{Z}$.
(\Leftarrow)
$a \mathbb{Z} \subset b \mathbb{Z} \Rightarrow a=a \cdot 1 \in b \mathbb{Z} \Rightarrow a=b m$ for some $m \in \mathbb{Z} \Rightarrow b \mid a$.
3. See Theorem 1.2 .8 on page 21.
4. See Theorem 1.2 .7 on page 20 .
5. Since n is divisible by 2 , it can be written as 2 times an integer. That integer has a prime factorization, so n can be written as a product of primes, at least one of which is 2 . Similarly, n can be written as a product of primes, at least one of which is 3 . By uniqueness of the prime factorization, the prime factorization of n must contain both 2 and 3 . Let the product of other primes (all primes, if any, besides one copy of 2 and one copy of 3) be m. Then $n=2 \cdot 3 \cdot m=6 m$. Thus n is divisible by 6 .
6. (a) $15 x \equiv 21(\bmod 24)$

Since $(15,24)=3$ and $3 \mid 21$, this congruence has 3 solutions mod 24 , which are congruent mod 8.
Divide by $3: \quad 5 x \equiv 7(\bmod 8)$
Again, we see that since $(5,8)=1$, this congruence has a unique solution mod 8 .
Multiply by 5 (which is the inverse of $\left.[5]_{8}\right): 25 x \equiv 35(\bmod 8)$
Reduce: $x \equiv 3(\bmod 8)$.
(b) $15 x \equiv 8(\bmod 24)$

Since $(15,24)=3$ and $3 \nless 8$, this congruence has no solutions.
7. $x \equiv 6(\bmod 25), x \equiv 2(\bmod 11)$.

Since $(25,11)=1$, by the Chinese Remainder Theorem the system has a unique solution modulo $25 \cdot 11=275$.
$25=11 \cdot 2+3$
$11=3 \cdot 3+2$
$3=2 \cdot 1+1$
$1=3-2 \cdot 1=3-(11-3 \cdot 3) \cdot 1=3-11 \cdot 1+3 \cdot 3=3 \cdot 4-11 \cdot 1=(25-11 \cdot 2) \cdot 4-11 \cdot 1=$ $25 \cdot 4-11 \cdot 8-11 \cdot 1=25 \cdot 4-11 \cdot 9$.
Now, $2 \cdot 25 \cdot 4-6 \cdot 11 \cdot 9=200-594=-394$ is a solution.
Since $-394 \equiv 156(\bmod 275)$, we can write the answer as $x \equiv 156(\bmod 275)$.
8. (a) $\phi(n)$ is the number of positive integers less than or equial to n that are relatively prime to n.
(b) List all positive integers from 1 to 15 , and exclude those which are not relatively prime to 15 , that is, which are divisible by 3 or 15 .
All: $1,2,3,4,5,6,7,8,9,10,11,12,13,14,15$
Divisible by 3: $3,6,9,12,15$
Divisible by 5: $5,10,15$
The rest are relatively prime to $15: 1,2,4,7,8,11,13,14$ - there are 8 integers in this list, therefore $\phi(15)=8$.
(c) $\phi(p q)=p q\left(1-\frac{1}{p}\right)\left(1-\frac{1}{q}\right)=p q \frac{p-1}{p} \frac{q-1}{q}=(p-1)(q-1)=p q-p-q+1$.
9. $[101]_{1000}^{2}=[201]_{1000},[101]_{1000}^{3}=[301]_{1000},[101]_{1000}^{4}=[401]_{1000},[101]_{1000}^{5}=[501]_{1000}$, $[101]_{1000}^{6}=[601]_{1000},[101]_{1000}^{7}=[701]_{1000},[101]_{1000}^{8}=[801]_{1000},[101]_{1000}^{9}=[901]_{1000}$, $[101]_{1000}^{10}=[1]_{1000}$, therefore the multiplicative order of $[101]_{1000}^{2}$ is 10 , and the multiplicative inverse is $[901]_{1000}$.
10. (a) $f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{12}$ given by $f\left([x]_{8}\right)=[3 x]_{12}$ is well-defined because $[x]_{8}=[y]_{8} \Rightarrow 8|(x-y) \Rightarrow 24| 3(x-y) \Rightarrow 12|3(x-y) \Rightarrow 12|(3 x-3 y) \Rightarrow[3 x]_{12}=[3 y]_{12}$.
(b) $f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{16}$ given by $f\left([x]_{8}\right)=[-x]_{16}$ is not well-defined because $f\left([0]_{8}\right)=[0]_{16}$ but $f\left([8]_{8}\right)=[-8]_{16} \neq[0]_{16}$ while $[0]_{8}=[8]_{8}$.
(c) $f: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{16}$ given by $f\left([x]_{16}\right)=[-x]_{16}$ is well-defined because $[x]_{16}=[y]_{16} \Rightarrow[-x]_{16}=[-y]_{16}$
11. Let $f: \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{12}$ be given by $f\left([x]_{8}\right)=[3 x]_{12}$.
(a) It is not one-to-one because e.g. $f\left([0]_{8}\right)=[0]_{12}=[12]_{12}=f\left([4]_{8}\right)$ while $[0]_{8} \neq[4]_{8}$.
(b) It is not onto because e.g. [1] ${ }_{12}$ is not in the image (this can be easily checked by finding the images of all elements of \mathbb{Z}_{8}). (Also, the function cannot be onto since \mathbb{Z}_{12} contains more elements than \mathbb{Z}_{8}.)
(c) Checking the images of all elements in \mathbb{Z}_{8}, we see $f\left(Z_{8}\right)=\left\{[0]_{12},[3]_{12},[6]_{12},[9]_{12},\right\}$.
(d) $\mathbb{Z} / f=\left\{\left[[0]_{8}\right],\left[[1]_{8}\right],\left[[2]_{8}\right],\left[[3]_{8}\right]\right\}$.

Let $f: \mathbb{Z}_{16} \rightarrow \mathbb{Z}_{16}$ given by $f\left([x]_{16}\right)=[-x]_{16}$.
(a) It is one-to-one because $f\left([x]_{16}\right)=f\left([y]_{16}\right)$ means $[-x]_{16}=[-y]_{16}$, which implies $[x]_{16}=[y]_{16}$
(b) It is onto because for any $[x]_{16}, f([-x])=[x]_{16}$.
(c) \mathbb{Z}_{16}.
(d) $\left\{[x] \mid x \in \mathbb{Z}_{16}\right\}$.
12. $f: \mathbb{Z}_{m n} \rightarrow \mathbb{Z}_{m} \times \mathbb{Z}_{n}$ by $f\left([x]_{m n}\right)=\left([x]_{m},[x]_{n}\right)$.

Each element of $\mathbb{Z}_{m n}$ can be written as $[x]_{m n}$ for some integer x, and f can be defined by the above formula. We have to show that f is well-defined.
If $[x]_{m n}=[y]_{m n}$ then $m n \mid(x-y)$. Then $m \mid(x-y)$ and $n \mid(x-y)$, so $[x]_{m}=[y]_{m}$ and $[x]_{n}=[y]_{n}$. Therefore $\left([x]_{m},[x]_{n}\right)=\left([y]_{m},[y]_{n}\right)$.
Now we show that if f is onto then $(m, n)=1$. Let's prove by contradiction. Suppose $(m, n)=d>1$. Then we claim that f is not onto because, for example, the pair $\left([0]_{m},[1]_{n}\right)$ is not in the image: $\left([x]_{m},[x]_{n}\right)=\left([0]_{m},[1]_{n}\right)$ would imply that $[x]_{m}=[0]_{m}$ and $[x]_{n}=[1]_{n}$, then $m \mid x$ and $n \mid(x-1)$, so $d \mid x$ and $d \mid(x-1)$, therefore $d \mid 1$ which is impossible. So we have a contradiction.
Conversely, if $(m, n)=1$, then by the Chinese Remainder Theorem for each pair
(a, b) there exists x such that $x \equiv a(\bmod m)$ and $x \equiv b(\bmod n)$. Then $\left([x]_{m},[x]_{n}\right)=$ $\left([a]_{m},[b]_{n}\right)$, so each pair $\left([a]_{m},[b]_{n}\right)$ is in the image, and thus f is onto.
13. (a) Consider $x=0, y=1$, and $z=2$. Then $x \sim y$ and $y \sim z$, but $x \nsim z$. So transitiviy is not satisfied, and thus $x \sim y$ is not an equivalence relation.
(b) $x \sim y$ if $|x|=|y|$ is an equivalence relation.

Reflexive law: $x \sim x$ for all x because $|x|=|x|$.
Symmetric law: if $x \sim y$ then $|x|=|y|$ then $|y|=|x|$ then $y \sim x$.
Transitive law: if $x \sim y$ and $y \sim z$, we have $|x|=|y|$ and $|y|=|z|$, then $|x|=|z|$, so $x \sim z$.
There are infinitely many equivalence classes. One consists of just one element 0 , and all other equivalence classes consist of 2 elements, one positive and one negative, of the form $\{a,-a\}$. E.g. $\{1,-1\},\{3,-3\}$, etc.
(c) $x \sim y$ if $x y>0$ is not an equivalece relation because the reflexive law is not satisfied: $0 \nsim 0$ according to the given rule.
(d) $x \sim y$ if either $x y>0$ or $x=y=0$ is an equivalence relation.

Reflexive law: $x \sim x$ for all x because either $x \cdot x>0$ or $x=x=0$.
Symmetric law: if $x \sim y$ then either $x y>0$ or $x=y=0$, then either $y x>0$ or $y=x=0$, so $y \sim x$.
Transitive law: if $x \sim y$ and $y \sim z$, then either $x y>0$ (in which case $y \neq 0$, so $y z \neq 0$) and $y z>0$, or $x=y=0$ and $y=z=0$. In the first case we have $x y>0$ and $y z>0$, then $x y^{2} z>0$, so $x z>0\left(\right.$ since $\left.y^{2}>0\right)$. In the second case we have $x=z=0$. Thus in both cases $x \sim z$.
There are 3 equivalence classes: one class consists of 0 alone, one class consists of all positive numbers, and the third class consists of all negative numbers.
14.
(a) $\sigma \tau=\left(\begin{array}{llllll}1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 1 & 6 & 2\end{array}\right), \tau \sigma=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 6 & 2 & 3 & 4\end{array}\right)$.
(b) σ and τ do not commute because $\sigma \tau \neq \tau \sigma$.
(c) $\sigma^{-1}=\left(\begin{array}{cccccc}3 & 1 & 6 & 4 & 5 & 2 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 2 & 6 & 1 & 4 & 5 & 3\end{array}\right)$, $\tau^{-1}=\left(\begin{array}{cccccc}1 & 4 & 5 & 2 & 3 & 6 \\ 1 & 2 & 3 & 4 & 5 & 6\end{array}\right)=\left(\begin{array}{cccccc}1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 4 & 5 & 2 & 3 & 6\end{array}\right)$.
(d) $\sigma=(1362), \tau=(24)(35)$
(e)

σ

τ
(f) $\sigma=(1362)=(13)(36)(62)$
(g) σ is odd because it can be written as a product of 3 (which is an odd number) transpositions, and τ is even because it can be written as a product of 2 (which is an even number) transpositions.

