Practice problems for Test 2

Answers

1. (Note: feel free to show me your examples to make sure they are correct.)

group	order	abelian?	cyclic?
\mathbb{Z}_5^*	4	yes	yes
\mathbb{Z}_6	6	yes	yes
S_3	6	no	no
$\mathbb{Z}_4 \times \mathbb{Z}_2$	8	yes	no
\mathbb{Z}	∞	yes	yes
$GL_2(\mathbb{R})$	∞	no	no
$\{e\}$ =trivial	1	yes	yes
D_5	10	no	no
$Mat_{2\times 3}(\mathbb{Z}_2)$	64	yes	no
\mathbb{R}	∞	yes	no

- 3. $\mathbb{R} \cong \mathbb{R}^+$; $\mathbb{Z}_2 \times \mathbb{Z}_8 \cong \mathbb{Z}_8 \times \mathbb{Z}_2$.
- 5. 4. $\left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}, \begin{bmatrix} 4 & 0 \\ 0 & 4 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 2 \end{bmatrix} \right\}$.
- 6. (a) 8
 - (b) $H = \{0, 6, 12, 18\}$ is a cyclic subgroup. Generators: 6 and 18. $K = \{0, 4, 8, 12, 16, 20\}$ is a cyclic subgroup. Generators: 4 and 20. $H \cap K = \{0, 12\}$ is a cyclic subgroup. Generator: 12. $H \cup K = \{0, 4, 6, 8, 12, 16, 18, 20\}$ is not a subgroup. $H + K = \{0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22\}$ is a cyclic subgroup. Generators: 2, 10, 14, 22.
- 7. (a) Yes. $Ker(f) = \{0\}$. Image = $3\mathbb{Z}$. One-to-one. Not onto. Not isomorphism.
 - (b) Yes. $Ker(f) = 4\mathbb{Z}$. Image = \mathbb{Z}_4 . Not one-to-one. Onto. Not isomorphism.
 - (c) Yes. $\operatorname{Ker}(f) = 3\mathbb{Z}$. Image = $2\mathbb{Z}_6$. Not one-to-one. Not onto. Not isomorphism.
 - (d) No.
 - (e) Yes. $Ker(f) = \{[0]\}$. Image = \mathbb{Z}_{10} . One-to-one. Onto. Isomorphism.
 - (f) Yes. $Ker(f) = \{(x, -x)\}$. Image = \mathbb{R} . Not one-to-one. Onto. Not isomorphism.
 - (g) Yes. $Ker(f) = \{(1,1)\}$. $Image = \left\{ \begin{bmatrix} a & b \\ -2b & a+3b \end{bmatrix} \right\}$. One-to-one. Not onto. Not isomorphism.