Practice problems for Test 2

Solutions

1. (Note: feel free to show me your examples to make sure they are correct.)

group	order	abelian?	cyclic?
\mathbb{Z}_{5}^{*}	4	yes	yes
\mathbb{Z}_{6}	6	yes	yes
S_{3}	6	no	no
$\mathbb{Z}_{4} \times \mathbb{Z}_{2}$	8	yes	no
\mathbb{Z}	∞	yes	yes
$G L_{2}(\mathbb{R})$	∞	no	no
$\{e\}=$ trivial	1	yes	yes
D_{5}	10	no	no
$M_{a t_{2 \times 3}\left(\mathbb{Z}_{2}\right)}$	64	yes	no
\mathbb{R}	∞	yes	no

\mathbb{Z}_{5}^{*} consists of all invertible elements in \mathbb{Z}_{5}, and it is a group under multiplication. $\mathbb{Z}_{5}^{*}=\{1,2,3,4\}$, so $\left|\mathbb{Z}_{5}^{*}\right|=4$. It is abelian since multiplication of numbers is commutative. It is cyclic because it is generated by $2:<2>=\{1,2,4,3\}=\mathbb{Z}_{5}^{*}$.
$\mathbb{Z}_{6}=\{0,1,2,3,4,5\}=<1>$ is an abelian cyclic group (under addition) of order 6. (In general, $\mathbb{Z}_{n}=\{0,1,2, \ldots, n-1\}=<1>$ is an abelian cyclic group of order n.)
$S_{3}=\{(1),(12),(13),(23),(123),(132)\}$ has order 6 . It is not abelian because e.g. (12)(13) $=(132)$ and $(13)(12)=(123)$. (In general, S_{n}, the permutation group on a set of n elements, it has order n ! and is non-abelian if $n>2$.) It is not cyclic if $n>2$ because every cyclic group is abelian and this one is not.
$\mathbb{Z}_{4} \times \mathbb{Z}_{2}=\left\{(x, y) \mid x \in \mathbb{Z}_{4}, y \in \mathbb{Z}_{2}\right\}$ is the set of all pairs, and it has order $4 \cdot 2=8$. It is abelian since both \mathbb{Z}_{4} and \mathbb{Z}_{2} are. It is not cyclic because it has no element of order 8: it is easy to check that the order of each element is ≤ 4.
\mathbb{Z} is an infinite cyclic group consisting of all integer numbers (with addition). It is abelian since addition of numbers is abelian. It is cyclic because it is generated by 1.
$G L_{2}(\mathbb{R})$ is the group of 2×2 invertible matrices with real entries under multiplication. There are infinitely many such matrices, so its order is infinity. It is not abelian because e.g. $\left[\begin{array}{ll}0 & 2 \\ 3 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=$ $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$ and $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{cc}0 & 2 \\ 3 & 0\end{array}\right]=\left[\begin{array}{ll}3 & 0 \\ 0 & 2\end{array}\right]$. It is not cyclic because every cyclic group is abelian.
$\{e\}=$ trivial group has only one element. It is abelian (all elements commute), and cyclic (generated by e). It is a very uninteresting group, but I just wanted to give an example of a group of order 1.
D_{5}, dihedral group of order $2 \cdot 5=10$, is the group of rigid motions of a regular pentagon. Its elements are $e, a, a^{2}, a^{3}, a^{4}, b, a b, a^{2} b, a^{3} b, a^{4} b$. It is not abelian (e.g. $b a=a^{4} b \neq a b$), and hence not cyclic.
$\operatorname{Mat}_{2 \times 3}\left(\mathbb{Z}_{2}\right)$ is the group of all 2×3 matrices with entries in \mathbb{Z}_{2} under addition. Its order is 64 : each entry can be either 0 or 1 , and there are 6 entries, so there are $2^{6}=64$ such matrices. It is abelian since addition in \mathbb{Z}_{2} is commutative. But it is not cyclic: each non-zero element has order 2 because if you add an entry of a matrix to itself you'll get 0 , thus any matrix added to itself gives the zero
matrix. Therefore there is no element (matrix) of order 64.
\mathbb{R} is an infinite group of real numbers under addition. It is abelian (addition of numbers is commutative) but not cyclic: every nonzero element generates a cyclic subgroup consisting of its own multiples, thus every cyclic subgroup has a smallest positive element. But \mathbb{R} does not have any.
2. (a) Let $S=\left\{A \in G L_{2}(\mathbb{R}) \mid \operatorname{det}(A)>0\right\}$. First, S is closed under multiplication since if $A, B \in S$, then $\operatorname{det}(A)>0$ and $\operatorname{det}(B)>0$, and then $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)>0$, so $A B \in S$. Second, S contains the identity matrix, since $\operatorname{det}\left(I_{2}\right)=1>0$. Finally, S is closed under the inverses since if $A \in S$, then $\operatorname{det}(A)>0$, and then $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}>0$, so $A^{-1} \in S$. Thus the set S is a subgoup.
(b) The set is not a subgroup because it does not contain the identity matrix, since $\operatorname{det}\left(I_{2}\right)=1$.
(c) The set is not a subgroup because it is not closed under the inverses, e.g. for $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$, $\operatorname{det}(A)=4 \in \mathbb{Z}$, so A is in the set, but $A^{-1}=\left[\begin{array}{cc}0.5 & 0 \\ 0 & 0.5\end{array}\right]$ has $\operatorname{det}\left(A^{-1}\right)=0.25 \notin \mathbb{Z}$, so A^{-1} is not in the set.
3. First notice that $\mathbb{R}, \mathbb{R}^{*}, \mathbb{R}^{+}$, and $G L_{2}(\mathbb{R})$ have infinite order, while $\mathbb{Z}_{4} \times \mathbb{Z}_{4}, \mathbb{Z}_{2} \times \mathbb{Z}_{8}, \mathbb{Z}_{8} \times \mathbb{Z}_{2}$, and \mathbb{Z}_{16} have order 16 . So we only have to check the first 4 groups, and the last 4 groups, separately.

Among the first 4 groups, \mathbb{R} and \mathbb{R}^{+}are isomorphic: let $f: \mathbb{R} \rightarrow \mathbb{R}^{+}$be defined by $f(x)=e^{x}$. Then $f(x+y)=e^{x+y}=e^{x} e^{y}=f(x) f(y) . f$ is one-to-one because if $f(x)=f(y)$ then $e^{x}=e^{y}$, then $\ln e^{x}=\ln e^{y}$ which implies $x=y$. Finally, f is onto because for any positive real z, let $x=\ln z$, then $f(x)=f(\ln z)=e^{\ln z}=z$. (See example 3.4.2 on p.136.)

Groups \mathbb{R} and \mathbb{R}^{*} are not isomorphic because the first group has no element of order 2, and the second group has an element of order 2, namely $-1:(-1)^{2}=1 . \mathbb{R}^{+}$and \mathbb{R}^{*} are not isomorphic for the same reason. (See example 3.4.4 on p.137.)

Finally, $G L_{2}(\mathbb{R})$ is not isomophic to any of the above because $G L_{2}(\mathbb{R})$ has an element of order 4 (e.g. see exercise 1(b) on page 119), but the other groups do not.

Among the last 4 groups, $\mathbb{Z}_{2} \times \mathbb{Z}_{8}$ and $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$ are isomorphic: define $f: \mathbb{Z}_{2} \times \mathbb{Z}_{8} \rightarrow \mathbb{Z}_{8} \times \mathbb{Z}_{2}$ by $f((x, y))=(y, x)$. Obviously this is a 1-1 correspondence, and it is a homomorphism because $f((x, y)+(z, w))=f((x+z, y+w))=(y+w, x+z)=(y, x)+(w, z)=f((x, y))+f((z, w))$.

All other pairs are not isomorphic: $\mathbb{Z}_{4} \times \mathbb{Z}_{4}$ only has elements of order $\leq 4 ; \mathbb{Z}_{2} \times \mathbb{Z}_{8}$ and $\mathbb{Z}_{8} \times \mathbb{Z}_{2}$ have elements of order 8 but no elements of order $16 ; \mathbb{Z}_{16}$ has elements of order 16 .
4. Let's denote this subset of G by H. We want to show that H is a subgroup.

Closed under multiplication: if $a, b \in H$, then $a^{2}=b^{2}=e$. Then $(a b)^{2}=a^{2} b^{2}=e \cdot e=e$, so $a b \in H$. Identity: $o(e)=1 \leq 2$, so $e \in H$.
Closed under inverses: if $a \in H$, then $a^{2}=e$. Then $\left(a^{-1}\right)^{2}=\left(a^{2}\right)^{-1}=e^{-1}=e$, so $a^{-1} \in H$.
5. Let's denote the given matrix by A. We have to compute powers of A until we get the identity matrix. The smallest positive k such that $A^{k}=I$ is then the order of A, and the cyclic subgroup generated by A is $\left\{I, A, A^{2}, \ldots, A^{k-1}\right\}$. Notice that entries of our matrices are elements of \mathbb{Z}_{3}, so each time we multiply matrices, we have to reduce each entry of the product modulo 3. Then
$<\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right]>=\left\{I_{2},\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right],\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right],\left[\begin{array}{ll}2 & 2 \\ 0 & 2\end{array}\right]\right\}$.
Therefore the order of A is 6 .
6. (a) Generators of \mathbb{Z}_{24} are numbers (more precisely, classes of numbers) between 0 and 24 that are relatively prime to 24 . There are 8 of them: $1,5,7,11,13,17,19,23$.
(b) $H=\{0,6,12,18\}$ is a cyclic subgroup. Generators: 6 and 18.0 and 12 are not generators because the order of 0 is 1 , and the order of 12 is 2 .
$K=\{0,4,8,12,16,20\}$ is a cyclic subgroup. Generators: 4 and 20.
$H \cap K=\{0,12\}$ is a cyclic subgroup. Generator: 12.
$H \cup K=\{0,4,6,8,12,16,18,20\}$ is not a subgroup: it is not closed under addition, e.g., $4+6=10 \notin H \cup K$.
$H+K=\{0,2,4,6,8,10,12,14,16,18,20,22\}$ is a cyclic subgroup. Generators: $2,10,14,22$.
7. (a) $f: \mathbb{Z} \rightarrow \mathbb{Z}, f(x)=3 x$ is a homomorphism: $f(x+y)=3(x+y)=3 x+3 y=f(x)+f(y)$. $\operatorname{Ker}(f)=\{0\}$. Image $=3 \mathbb{Z}$, the set of all multiples of 3 . It is one-to-one because $3 x=3 y$ implies $x=y$. It is not onto because e.g. 1 is not in the image. It is not an isomorphism because it is not onto.
(b) $f: \mathbb{Z} \rightarrow \mathbb{Z}_{4}, f(x)=[x]_{4}$ is a homomorphism: $f(x+y)=[x+y]_{4}=[x]_{4}+[y]_{4}=f(x)+f(y)$. $\operatorname{Ker}(f)=4 \mathbb{Z}$, the set of all multiples of 4 . Image $=\mathbb{Z}_{4}$. It is not one-to-one because e.g. $f(0)=[0]_{4}$ and $f(4)=[4]_{4}=[0]_{4}$. It is onto: every element of \mathbb{Z}_{4} is in the image since $[x]_{4}=f(x)$. It is not an isomorphism because it is not one-to-one.
(c) $f: \mathbb{Z} \rightarrow \mathbb{Z}_{6}, f(x)=[2 x]_{6}$ is a homomorphism: $f(x+y)=[2(x+y)]_{6}=[2 x+2 y]_{6}=$ $[2 x]_{6}+[2 y]_{6}=f(x)+f(y) . \operatorname{Ker}(f)=3 \mathbb{Z}$, the set of all multiples of 3 . Image $=2 \mathbb{Z}_{6}=\{0,2,4\}$. It is not one-to-one because e.g. $f(0)=[0]_{6}$ and $f(3)=[6]_{6}=[0]_{6}$. It is not onto because e.g. $[1]_{6}$ is not in the image. It is not an isomorphism e.g. because it is not one-to-one.
(d) $f: \mathbb{Z}_{2} \rightarrow \mathbb{Z}, f\left([x]_{2}\right)=x$ is not a homomorphism because it is not a well-defined function: $[0]_{2}=[2]_{2}$, but $f\left([0]_{2}\right)=0, f\left([2]_{2}\right)=2$, and $0 \neq 2$.
(e) $f: \mathbb{Z}_{10} \rightarrow \mathbb{Z}_{10}, f\left([x]_{10}\right)=[3 x]_{10}$ is a homomorphism. First, we will show that this function is well-defined: if $[x]_{10}=[y]_{10}$, then $f\left([x]_{10}\right)=[3 x]_{10}=[3 y]_{10}=f\left([y]_{10}\right)$. It preserves the operation since $f\left([x]_{10}+[y]_{10}\right)=f\left([x+y]_{10}\right)=[3 x+3 y]_{10}=[3 x]_{10}+[3 y]_{10}=f\left([x]_{10}\right)+f\left([y]_{10}\right)$. It is one-to-one: if $f\left([x]_{10}\right)=f\left([y]_{10}\right)$, then $[3 x]_{10}=[3 y]_{10}$. Multiplying both sides by 7 , we get $[21 x]_{10}=[21 y]_{10}$. Since $[21]_{10}=[1]_{10}$, we have $[x]_{10}=[y]_{10}$. It is onto since for any $[y]_{10}, f\left([7 y]_{10}\right)=[21 y]_{10}=[y]_{10}$. It is an isomorphism since it is a bijection and preserves the operation.
(f) $f: \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R}, f((x, y))=x+y$ is a homomorphism. The kernel consists of all pairs (x, y) for which $x+y=0$, or $y=-x$. Therefore $\operatorname{Ker}(f)=\{(x,-x)\}$. Image $=\mathbb{R}$: given $z \in \mathbb{R}$, $z=f((z, 0))$ is in the image. It is not one-to-one because e.g. $f((1,0))=1$ and $f((2,1))=1$. It is onto as shown above.It is not an isomorphism because it is not one-to-one.
(g) $f: \mathbb{R}^{*} \times \mathbb{R}^{*} \rightarrow G L_{2}(\mathbb{R}), f((x, y))=\left[\begin{array}{cc}2 x-y & y-x \\ 2 x-2 y & 2 y-x\end{array}\right]$ is a homomorphism:
$f((x, y)) f((z, w))=\left[\begin{array}{cc}2 x-y & y-x \\ 2 x-2 y & 2 y-x\end{array}\right]\left[\begin{array}{cc}2 z-w & w-z \\ 2 z-2 w & 2 w-z\end{array}\right]$
$=\left[\begin{array}{cc}(2 x-y)(2 z-w)+(y-x)(2 z-2 w) & (2 x-y)(w-z)+(y-x)(2 w-z) \\ (2 x-2 y)(2 z-w)+(2 y-x)(2 z-2 w) & (2 x-2 y)(w-z)+(2 y-x)(2 w-z)\end{array}\right]$
$=\left[\begin{array}{cc}2 x z-y w & y w-x z \\ 2 x z-2 y w & 2 y w-x z\end{array}\right]=f((x z, y w))=f((x, y)(z, w))$.
The kernel of f consists of all pairs for which $2 x-y=2 y-x=1$ and $2 x-2 y=y-x=0$. Solving this system gives $x=y=1$.
The image of f consists of all matrices of the form $\left[\begin{array}{cc}2 x-y & y-x \\ 2 x-2 y & 2 y-x\end{array}\right]$. It is OK to leave this matrix as is. However, I decided to give a slightly more explicit desctiption: let $a=2 x-y$ and $b=y-x$, then the other two entries can be expressed in terms of a and b, and Image $=\left\{\left.\left[\begin{array}{cc}a & b \\ -2 b & a+3 b\end{array}\right] \right\rvert\,\right.$ this matrix must be invertible: $\left.a^{2}+3 a b+4 b \neq 0\right\}$.
f is one-to-one since the kernel is trivial, and it is not onto because e.g. $\left[\begin{array}{ll}1 & 2 \\ 1 & 0\end{array}\right]$ is not in the image. It is not an isomorphism because it is not onto.

