Practice problems for Test 2

The actual test will consist of 6 problems. You will have 1 hour to complete the test.

1. Fill in the table below and provide brief explanations. For the last 4 rows, give your own examples of groups, determine their order, whether they are abelian, and whether they are cyclic.

group	order	abelian?	cyclic?
group \mathbb{Z}_5^*			
	6	yes	
	6	no	
	8	yes	no
	∞		yes
	∞	no	

- 2. Prove that
 - (a) the set $\{A \in GL_2(\mathbb{R}) \mid \det(A) > 0\}$ is a subgroup of $GL_2(\mathbb{R})$.
 - (b) the set $\{A \in GL_2(\mathbb{R}) \mid \det(A) < 0\}$ is not a subgroup of $GL_2(\mathbb{R})$.
 - (c) the set $\{A \in GL_2(\mathbb{R}) \mid \det(A) \in \mathbb{Z}\}$ is not a subgoup of $GL_2(\mathbb{R})$.
- 3. Which of the following groups are isomorphic? \mathbb{R} , \mathbb{R}^* , \mathbb{R}^+ , $GL_2(\mathbb{R})$, $\mathbb{Z}_4 \times \mathbb{Z}_4$, $\mathbb{Z}_2 \times \mathbb{Z}_8$, $\mathbb{Z}_8 \times \mathbb{Z}_2$, \mathbb{Z}_{16}
- 4. Let G be an abelian group. Prove that the set of elements of G of order less than or equal to 2 is a subgroup.

5. Find the order and the cyclic subgroup generated by $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$ in $GL_2(\mathbb{Z}_5)$.

- 6. Let $G = Z_{24}$.
 - (a) How many generators does G have?
 - (b) Consider subgroups H = < 6 > and K = < 4 >. List all the elements of H and K. Find $H \cap K$, $H \cup K$, and H + K. Which of these are subgroups of G? For those which are subgroups, are they cyclic? If so, find all the generators.
- 7. Which of the following formulas define homomorphisms? (Explain why or why not.) For each homomorphism, determine its kernel, image, whether it is one-to-one or onto, and whether it is an isomorphism.
 - (a) $f : \mathbb{Z} \to \mathbb{Z}, f(x) = 3x$
 - (b) $f: \mathbb{Z} \to \mathbb{Z}_4, f(x) = [x]_4$
 - (c) $f: \mathbb{Z} \to \mathbb{Z}_6, f(x) = [2x]_6$
 - (d) $f: \mathbb{Z}_2 \to \mathbb{Z}, f([x]_2) = x$
 - (e) $f : \mathbb{Z}_{10} \to \mathbb{Z}_{10}, f([x]_{10}) = [3x]_{10}$
 - (f) $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R}, f((x, y)) = x + y$
 - (g) $f: \mathbb{R}^* \times \mathbb{R}^* \to GL_2(\mathbb{R}), f((x,y)) = \begin{bmatrix} 2x y & y x \\ 2x 2y & 2y x \end{bmatrix}$