Math 151

Practice problems for Test 3 - Solutions

1. $\begin{aligned} & x^{2}+2 \frac{x^{3}-2 x}{x^{5}+3 x+1} \\ & \frac{x^{5}+2 x^{3}}{-2 x^{3}+3 x} \\ & \frac{-2 x^{2}-4 x}{7 x+1}\end{aligned}$

So the quotient is $q(x)=x^{3}-2 x$ and the remainder is $r(x)=7 x+1$.
2. $f(x)=x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2, g(x)=x^{4}+3 x^{2}+3 x+6$.
(a) Using the Euclidean algorithm (modulo 7), we have:
$x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2=\left(x^{4}+3 x^{2}+3 x+6\right)(x+4)+\left(3 x^{3}+5 x^{2}+x+6\right)$
$x^{4}+3 x^{2}+3 x+6=\left(3 x^{3}+5 x^{2}+x+6\right)(5 x+1)$
Therefore the monic polynomial that is a multiple of $3 x^{3}+5 x^{2}+x+6$ is the gcd of f and g. To get a monic polynomial, multiply $3 x^{3}+5 x^{2}+x+6$ by 5 (the multiplicative inverse of 3 modulo 7):
$d(x)=x^{3}+4 x^{2}+5 x+2$.
(b) $3 x^{3}+5 x^{2}+x+6=\left(x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2\right)-\left(x^{4}+3 x^{2}+3 x+6\right)(x+4)$

Rewrite with a plus:
$3 x^{3}+5 x^{2}+x+6=\left(x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2\right)+\left(x^{4}+3 x^{2}+3 x+6\right)(6 x+3)$
Multiply both sides by 5 :
$x^{3}+4 x^{2}+5 x+2=\left(x^{5}+4 x^{4}+6 x^{3}+6 x^{2}+5 x+2\right) \cdot 5+\left(x^{4}+3 x^{2}+3 x+6\right)(2 x+1)$
Therefore $a(x)=5$ and $b(x)=2 x+1$.
3. Using the Euclidean algorithm (modulo 5), we have:
$x^{3}+x+1=(x+4)\left(x^{2}+x+2\right)+3$
$3=\left(x^{3}+x+1\right)-(x+4)\left(x^{2}+x+2\right)$
$3=\left(x^{3}+x+1\right)+(x+4)\left(-x^{2}-x-2\right)$
$3=\left(x^{3}+x+1\right)+(x+4)\left(4 x^{2}+4 x+3\right)$
Now multiply both sides by 2 (the multiplicative inverse of 3 modulo 5 , so that to get 1 on the left): $1=\left(x^{3}+x+1\right) 2+(x+4)\left(3 x^{2}+3 x+1\right)$
Thus we have $(x+4)\left(3 x^{2}+3 x+1\right) \equiv 1\left(\bmod x^{3}+x+1\right)$, so $[x+4]^{-1}=3 x^{2}+3 x+1$.
4. Since a rational root of $x^{4}+4 x^{3}+8 x+32=0$ must be of the form $\frac{r}{s}$ where $r \mid 32$ and $s \mid 1$, the possible roots are $\pm 1, \pm 2, \pm 4, \pm 8, \pm 16$, and ± 32. But notice that since all the coefficients are positive, a root cannot be positive. An easy check gives that -1 is not a root, but -2 is a root $(16-4 \cdot 8-8 \cdot 2+32=0)$. Therefore the polynomial is divisible by $x+2$. Long division gives: $x^{4}+4 x^{3}+8 x+32=(x+2)\left(x^{3}+2 x^{2}-4 x+16\right)$. Now we have to find all roots of $x^{3}+2 x^{2}-4 x+16$. Possible roots are $-2,-4,-8$, and -16 . -2 is not a root, but -4 is a root $(-64+32+16+16=0)$. Therefore we can divide by $x+4: x^{3}+2 x^{2}-4 x+16=(x+4)\left(x^{2}-2 x+4\right)$. Finally, since $x^{2}-2 x+4$ has no rational roots, the original polynomial has no other roots.
5 . over $\mathbb{Z}: x^{3}-2$ is irreducible because it has no integer roots
over \mathbb{Q} : still irreducible because it has no rational roots either
over $\mathbb{R}:(x-\sqrt[3]{2})\left(x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}\right)$
Now use the quadratic formula to find the roots of $x^{2}+\sqrt[3]{2} x+\sqrt[3]{4}$:
over $\mathbb{C}:(x-\sqrt[3]{2})\left(x+\frac{\sqrt[3]{2}+\sqrt[3]{2} \sqrt{3} i}{2}\right)\left(x+\frac{\sqrt[3]{2}-\sqrt[3]{2} \sqrt{3} i}{2}\right)$
over $\mathbb{Z}_{3}: 0$ is not a root; 1 is not a root; 2 is a root, so divide by $x-2$ (or equivalently, $x+1)$ over $\mathbb{Z}_{3}: x^{3}-2=(x+1)\left(x^{2}-x+1\right)$. Now, $x^{2}-x+1$ also has a root, namely, 2 again. So divide by $x-2=x+1$ again, get $x^{2}+2 x+1=(x+1)^{2}$. Therefore $x^{3}-2=(x+1)^{3}$ over \mathbb{Z}_{3}.
Another way: $x^{3}-2 \equiv x^{3}+1 \equiv(x+1)\left(x^{2}-x+1\right) \equiv(x+1)\left(x^{2}+2 x+1\right) \equiv(x+1)^{3}$ $(\bmod 3)$.
6. First list all the polynomials of degree 3 over \mathbb{Z}_{2}. Since a polynomial of degree 3 is irreducible if and only if it has no roots, we check whether or not each of our polynomials has a root:
x^{3} has a root, $x=0$
$x^{3}+1$ has a root, $x=1$
$x^{3}+x$ has a root, $x=0$ (moreover, $x=1$ is also a root, but we don't need that)
$x^{3}+x+1$ has no roots
$x^{3}+x^{2}$ has a root, $x=0$ (also $x=1$)
$x^{3}+x^{2}+1$ has no roots
$x^{3}+x^{2}+x$ has a root, $x=0$
$x^{3}+x^{2}+x+1$ has a root, $x=1$
So only $x^{3}+x+1$ and $x^{3}+x^{2}+1$ have no roots and therefore are irreducible.
7. The prime $p=5$ divides all the coefficients of $3 x^{4}+30 x-60$ except the leading coefficient, and p^{2} does not divide the free term. Therefore by Eisenstein's criterion, this polynomial is irreducible over \mathbb{Q}.
8. First of all, let's list all the elements of the given set so that we see what we are working with. Since each coefficient (a and b) can be either 0 or 1 , we have 4 elements: $0+0 i$, $0+1 i, 1+0 i$, and $1+1 i$, or, for simplicity, just $0, i, 1$, and $1+i$. Addition and multiplication are defined as for complex numbers, but the results are reduced modulo 2.

It is a commutative ring: it is easy to check that associativity, commutativity, and distributivity hold, the additive identity is 0 , the multiplicative identity is 1 , the additive inverse of each element is that element itself.
$\mathbb{Z}_{2}(i)$ is not an integral domain because e.g. $(1+i)(1+i)=0$ while $1+i \neq 0$. It is not a field because every field is an integral domain.
9. An element (r, s) of $R \oplus S$ is a unit (i.e. an invertible element) if and only if r is a unit in R and s is a unit in S. Similarly for the sum of three rings.
(a) \mathbb{Z}_{6} has 2 units: 1 and 5 .
\mathbb{Z}_{8} has 4 units: $1,3,5$, and 7 .
Therefore $\mathbb{Z}_{6} \oplus \mathbb{Z}_{8}$ has 8 units: $(1,1),(1,3),(1,5),(1,7),(5,1),(5,3),(5,5),(5,7)$.
(b) Units in \mathbb{Z} are ± 1, thus $\mathbb{Z} \oplus \mathbb{Z} \oplus \mathbb{Z}$ has 8 units: $(\pm 1, \pm 1, \pm 1)$.
(c) Since \mathbb{R} is a field, every nonzero element is a unit. Thus $\mathbb{R} \oplus \mathbb{R}$ has infinitely many units, namely all elements of the form (a, b) where both a and b are nonzero.
10. (a) Let $\phi: \mathbb{Z} \rightarrow \mathbb{R}$ be a ring homomorphism. Then $\phi(0)=0$ (by Proposition 5.2.3) and $\phi(1)=1$ (by definition). We will prove by Mathematical Induction that for any $n \in \mathbb{N}, \phi(n)=n$. The basis step was established above. For the inductive step, assume $\phi(n)=n$ for a certain $n \in \mathbb{N}$. Then $\phi(n+1)=\phi(n)+\phi(1)=n+1$. Next, for any $n \in \mathbb{Z}, n<0$, we have $-n>0$, so by proposition 5.2.3 $\phi(n)=$ $\phi(-(-n))=-\phi(-n)=-(-n)=n$. Thus we have $\phi(n)=n$ for all $n \in \mathbb{Z}$.
(b) Since \mathbb{Z} is countable and \mathbb{R} is not, there are no bijections from \mathbb{Z} to \mathbb{R}, hence there are no isomorphisms.
11. (a) $\sqrt[4]{5}$ is algebraic over \mathbb{Q} because it is a root of $x^{4}-5=0$.
(b) $\sqrt[4]{5}+1$ is algebraic over \mathbb{Q} because it is a root of $(x-1)^{4}-5=0$.
(c) e is transcendental (i.e. not algebraic) over \mathbb{Q} as mentioned after Definition 6.1.1 on page 283, however, the proof is beyond this class.
(d) We will prove that $e+1$ is transcendental over \mathbb{Q} by contradiction. Suppose it is algebraic, then let $p(x)$ be a polynomial over \mathbb{Q} such that $p(e+1)=0$. Consider the polynomial $q(x)=p(x+1)$. Then $q(e)=p(e+1)=0$, so e is algebraic over \mathbb{Q}. However, we know that this is false.

