Math 171 Solutions to homework problems

Section 1.1

2(c) Solve $|x^2 - x - 1| < x^2$.

Since $x^2 \ge 0$ for all x, by Theorem 1.6 the given inequality is equivalent to $-x^2 < x^2 - x - 1 < x^2$, that is, $-x^2 < x^2 - x - 1$ and $x^2 - x - 1 < x^2$. So we solve both inequalities and take the intersection of their solution sets.

First we solve $-x^2 < x^2 - x - 1$. $2x^2 - x - 1 > 0$ (2x + 1)(x - 1) > 0Case 1: 2x + 1 > 0 and x - 1 > 0, so $x > -\frac{1}{2}$ and x > 1, therefore x > 1. Case 2: 2x + 1 < 0 and x - 1 < 0, so $x < -\frac{1}{2}$ and x < 1, therefore $x < -\frac{1}{2}$. Answer: $(-\infty, -\frac{1}{2}) \cup (1, \infty)$.

Now we solve $x^2 - x - 1 < x^2$. x + 1 > 0, so x > -1. Answer: $(-1, \infty)$.

The intersection of the two answers above is $(-1, -\frac{1}{2}) \cup (1, \infty)$.

4(7) Prove that $0 \le a < b$ and $0 \le c < d$ imply ac < bd. Show that this statement is false if the hypothesis $a \ge 0$ is removed.

Since $c \ge 0$, multiplying both sides of a < b gives $ac \le bc$. Since b > 0, multiplying both sides of c < d gives bc < bd. So $ac \le bc < bd$. By transitivity, we have ac < bd.

If the hypothesis $a \ge 0$ is removed and we only have a < b and $0 \le c < d$ then ac < bd may not hold.

Counterexample: a = -2, b = -1, c = 3, d = 7. Then ac = -6 and bd = -7.

7(a) Prove that |x| < 1 implies $|x^2 - 1| \le 2|x - 1|$.

The inequality $|x| \le 1$ implies that $-1 \le x \le 1$ (we use Theorem 1.6 again). Adding 1 gives $0 \le x + 1 \le 2$, and since -2 < 0 we have $-2 \le x + 1 \le 2$. Therefore $|x + 1| \le 2$. (Another way to get this is to use the triangle inequality: $|x + 1| \le |x| + |1| \le 1 + 1 = 2$.)

Now multiply both sides of the inequality $|x + 1| \le 2$ by |x - 1| (we can do this because $|x - 1| \ge 0$): $|x + 1| \cdot |x - 1| \le 2|x - 1|$. By the multiplicative property of the absolute value, $|(x + 1)(x - 1)| \le 2|x - 1|$. So $|x^2 - 1| \le 2|x - 1|$.

8(a) Find all values of $n \in \mathbb{N}$ that satisfy the inequality $\frac{1-n}{1-n^2} < 0.01$.

Rewrite the inequality as $\frac{1-n}{(1-n)(1+n)} < \frac{1}{100}$ and simplify (note that $n \neq 1$): $\frac{1}{1+n} < \frac{1}{100}$ 100 < 1+n (since both 100 and 1+n are positive) n > 99. Section 1.2

1(c) Prove that the formula $\sum_{k=1}^{n} \frac{a-1}{a^k} = 1 - \frac{1}{a^n}$ holds for all $n \in \mathbb{N}$ and $a \neq 0$.

We will prove this formula by induction on n.

Basis step: if n = 1, the formula says $\sum_{k=1}^{1} \frac{a-1}{a^k} = 1 - \frac{1}{a^1}$. The sum on the left hand side has only one term (k = 1), so the left hand side is $\frac{a-1}{a^1} = \frac{a}{a} - \frac{1}{a} = 1 - \frac{1}{a}$.

Inductive step: assume that the formula holds for n = m (althought traditionally k is used in this step instead of m, in our problem the letter k is reserved for the summation index, so we have to use something else here), so assume that $\sum_{k=1}^{m} \frac{a-1}{a^k} = 1 - \frac{1}{a^m}$ is true. We want to

prove that the formula is true for n = m + 1, i.e. $\sum_{k=1}^{m+1} \frac{a-1}{a^k} = 1 - \frac{1}{a^{m+1}}$.

Using the inductive hypothesis, we have: $\sum_{k=1}^{m+1} \frac{a-1}{a^k} = \sum_{k=1}^m \frac{a-1}{a^k} + \frac{a-1}{a^{m+1}} = 1 - \frac{1}{a^m} + \frac{1}{a^{m+1}} = 1 - \frac{1}{a^m} + \frac{1}{a^m} + \frac{1}{a^m} = 1 - \frac{1}{a^m} + \frac$ $1 - \frac{1}{a^m} + \frac{a}{a^{m+1}} - \frac{1}{a^{m+1}} = 1 - \frac{1}{a^m} + \frac{1}{a^m} - \frac{1}{a^{m+1}} = 1 - \frac{1}{a^{m+1}}.$ This completes the proof.

2(a) Use the Binomial Formula to prove that $2^n = \sum_{k=1}^n \binom{n}{k}$ for all $n \in \mathbb{N}$.

The Binomial Formula says that for any $a, b \in \mathbb{R}$ and any $n \in \mathbb{N}$, $(a+b)^n = \sum_{k=1}^n \binom{n}{k} a^{n-k} b^k$. In particular, if a = b = 1, it gives $(1+1)^n = \sum_{k=0}^n \binom{n}{k} 1^{n-k} 1^k$, or $2^n = \sum_{k=0}^n \binom{n}{k}$.

6(a) Prove that the inequality $n < 2^n$ holds for all $n \in \mathbb{N}$.

The proof is by induction on n.

Basis step: if $n = 1, 1 < 2^1$ is true.

Inductive step: assume that the inequality holds for n = k, i.e. $k < 2^k$. We want to prove that the inequality holds for n = k + 1, i.e. $k + 1 < 2^{k+1}$. We have: $k + 1 < 2^k + 1 < 2^k + 2^k = 2 \cdot 2^k = 2^{k+1}$.

6(b) Prove that the inequality $n^2 < 2^n + 1$ holds for all $n \in \mathbb{N}$.

Using the hint in the book, we first prove that the inequality $2n + 1 < 2^n$ holds for $n \ge 3$. Basis step: if n = 3, $2 \cdot 3 + 1 < 2^3$ says that 7 < 8 which is true. Inductive step: assume $2k+1 < 2^k$ is true, we want to prove that $2(k+1)+1 < 2^{k+1}$ is true. We have: $2(k+1)+1 = 2k+3 = (2k+1)+2 < 2^k+2 < 2^k+2^k = 2^{k+1}$.

Now we are ready to prove the inequality $n^2 \leq 2^n + 1$ for $n \geq 3$. Basis step: if n = 3, $3^2 \le 2^3 + 1$ is true since 9 = 8 + 1. Inductive step: assume that $k^2 \leq 2^k + 1$ is true, we want to prove that $(k+1)^2 \leq 2^{k+1} + 1$ is true (where $k \geq 3$). Using the inductive hypothesis and the inequality proved above we have: $(k+1)^2 = k^2 + (2k+1) \le 2^k + 1 + 2^k = 2 \cdot 2^k + 1 = 2^{k+1} + 1.$

Finally, we have to check our inequality for n = 1 and n = 2 since we only proved if for n > 3.

If n = 1, the inequality is $1^2 \le 2^1 + 1$ which is true, and if n = 2, it is $2^2 \le 2^2 + 1$ which is also true. This completes the proof.