Section 1.1

2(c) Solve $\left|x^{2}-x-1\right|<x^{2}$.
Since $x^{2} \geq 0$ for all x, by Theorem 1.6 the given inequality is equivalent to
$-x^{2}<x^{2}-x-1<x^{2}$, that is,
$-x^{2}<x^{2}-x-1$ and $x^{2}-x-1<x^{2}$. So we solve both inequalities and take the intersection of their solution sets.

First we solve $-x^{2}<x^{2}-x-1$.
$2 x^{2}-x-1>0$
$(2 x+1)(x-1)>0$
Case 1: $2 x+1>0$ and $x-1>0$, so $x>-\frac{1}{2}$ and $x>1$, therefore $x>1$.
Case 2: $2 x+1<0$ and $x-1<0$, so $x<-\frac{1}{2}$ and $x<1$, therefore $x<-\frac{1}{2}$.
Answer: $\left(-\infty,-\frac{1}{2}\right) \cup(1, \infty)$.
Now we solve $x^{2}-x-1<x^{2}$.
$x+1>0$, so $x>-1$.
Answer: $(-1, \infty)$.
The intersection of the two answers above is $\left(-1,-\frac{1}{2}\right) \cup(1, \infty)$.
4(7) Prove that $0 \leq a<b$ and $0 \leq c<d$ imply $a c<b d$. Show that this statement is false if the hypothesis $a \geq 0$ is removed.

Since $c \geq 0$, multiplying both sides of $a<b$ gives $a c \leq b c$.
Since $b>0$, multiplying both sides of $c<d$ gives $b c<b d$.
So $a c \leq b c<b d$. By transitivity, we have $a c<b d$.
If the hypothesis $a \geq 0$ is removed and we only have $a<b$ and $0 \leq c<d$ then $a c<b d$ may not hold.
Counterexample: $a=-2, b=-1, c=3, d=7$. Then $a c=-6$ and $b d=-7$.
7(a) Prove that $|x|<1$ implies $\left|x^{2}-1\right| \leq 2|x-1|$.
The inequality $|x| \leq 1$ implies that $-1 \leq x \leq 1$ (we use Theorem 1.6 again). Adding 1 gives $0 \leq x+1 \leq 2$, and since $-2<0$ we have $-2 \leq x+1 \leq 2$. Therefore $|x+1| \leq 2$. (Another way to get this is to use the triangle inequality: $|x+1| \leq|x|+|1| \leq 1+1=2$.)

Now multiply both sides of the inequality $|x+1| \leq 2$ by $|x-1|$ (we can do this because $|x-1| \geq 0)$:
$|x+1| \cdot|x-1| \leq 2|x-1|$.
By the multiplicative property of the absolute value, $|(x+1)(x-1)| \leq 2|x-1|$.
So $\left|x^{2}-1\right| \leq 2|x-1|$.
8(a) Find all values of $n \in \mathbb{N}$ that satisfy the inequality $\frac{1-n}{1-n^{2}}<0.01$.
Rewrite the inequality as $\frac{1-n}{(1-n)(1+n)}<\frac{1}{100}$ and simplify (note that $n \neq 1$):
$\frac{1}{1+n}<\frac{1}{100}$
$100<1+n$ (since both 100 and $1+n$ are positive)
$n>99$.

Section 1.2

1(c) Prove that the formula $\sum_{k=1}^{n} \frac{a-1}{a^{k}}=1-\frac{1}{a^{n}}$ holds for all $n \in \mathbb{N}$ and $a \neq 0$.
We will prove this formula by induction on n.
Basis step: if $n=1$, the formula says $\sum_{k=1}^{1} \frac{a-1}{a^{k}}=1-\frac{1}{a^{1}}$. The sum on the left hand side has only one term $(k=1)$, so the left hand side is $\frac{a-1}{a^{1}}=\frac{a}{a}-\frac{1}{a}=1-\frac{1}{a}$.
Inductive step: assume that the formula holds for $n=m$ (althought traditionally k is used in this step instead of m, in our problem the letter k is reserved for the summation index, so we have to use something else here), so assume that $\sum_{k=1}^{m} \frac{a-1}{a^{k}}=1-\frac{1}{a^{m}}$ is true. We want to prove that the formula is true for $n=m+1$, i.e. $\sum_{k=1}^{m+1} \frac{a-1}{a^{k}}=1-\frac{1}{a^{m+1}}$.

Using the inductive hypothesis, we have: $\sum_{k=1}^{m+1} \frac{a-1}{a^{k}}=\sum_{k=1}^{m} \frac{a-1}{a^{k}}+\frac{a-1}{a^{m+1}}=1-\frac{1}{a^{m}}+\frac{a-1}{a^{m+1}}=$ $1-\frac{1}{a^{m}}+\frac{a}{a^{m+1}}-\frac{1}{a^{m+1}}=1-\frac{1}{a^{m}}+\frac{1}{a^{m}}-\frac{1}{a^{m+1}}=1-\frac{1}{a^{m+1}}$. This completes the proof.
2(a) Use the Binomial Formula to prove that $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$ for all $n \in \mathbb{N}$.
The Binomial Formula says that for any $a, b \in \mathbb{R}$ and any $n \in \mathbb{N},(a+b)^{n}=\sum_{k=0}^{n}\binom{n}{k} a^{n-k} b^{k}$.
In particular, if $a=b=1$, it gives $(1+1)^{n}=\sum_{k=0}^{n}\binom{n}{k} 1^{n-k} 1^{k}$, or $2^{n}=\sum_{k=0}^{n}\binom{n}{k}$.
6(a) Prove that the inequality $n<2^{n}$ holds for all $n \in \mathbb{N}$.
The proof is by induction on n.
Basis step: if $n=1,1<2^{1}$ is true.
Inductive step: assume that the inequality holds for $n=k$, i.e. $k<2^{k}$. We want to prove that the inequality holds for $n=k+1$, i.e. $k+1<2^{k+1}$.
We have: $k+1<2^{k}+1<2^{k}+2^{k}=2 \cdot 2^{k}=2^{k+1}$.
6(b) Prove that the inequality $n^{2} \leq 2^{n}+1$ holds for all $n \in \mathbb{N}$.
Using the hint in the book, we first prove that the inequality $2 n+1<2^{n}$ holds for $n \geq 3$.
Basis step: if $n=3,2 \cdot 3+1<2^{3}$ says that $7<8$ which is true.
Inductive step: assume $2 k+1<2^{k}$ is true, we want to prove that $2(k+1)+1<2^{k+1}$ is true.
We have: $2(k+1)+1=2 k+3=(2 k+1)+2<2^{k}+2<2^{k}+2^{k}=2^{k+1}$.
Now we are ready to prove the inequality $n^{2} \leq 2^{n}+1$ for $n \geq 3$.
Basis step: if $n=3,3^{2} \leq 2^{3}+1$ is true since $9=8+1$.
Inductive step: assume that $k^{2} \leq 2^{k}+1$ is true, we want to prove that $(k+1)^{2} \leq 2^{k+1}+1$ is true (where $k \geq 3$).
Using the inductive hypothesis and the inequality proved above we have:
$(k+1)^{2}=k^{2}+(2 k+1) \leq 2^{k}+1+2^{k}=2 \cdot 2^{k}+1=2^{k+1}+1$.
Finally, we have to check our inequality for $n=1$ and $n=2$ since we only proved if for $n \geq 3$.
If $n=1$, the inequality is $1^{2} \leq 2^{1}+1$ which is true, and if $n=2$, it is $2^{2} \leq 2^{2}+1$ which is also true. This completes the proof.

