
Math 171 Solutions to homework problems Spring 2005

Section 1.1

2(c) Solve |x2 − x − 1| < x2.

Since x2 ≥ 0 for all x, by Theorem 1.6 the given inequality is equivalent to
−x2 < x2 − x − 1 < x2, that is,
−x2 < x2−x−1 and x2−x−1 < x2. So we solve both inequalities and take the intersection
of their solution sets.

First we solve −x2 < x2 − x − 1.
2x2 − x − 1 > 0
(2x + 1)(x − 1) > 0
Case 1: 2x + 1 > 0 and x − 1 > 0, so x > − 1

2
and x > 1, therefore x > 1.

Case 2: 2x + 1 < 0 and x − 1 < 0, so x < − 1

2
and x < 1, therefore x < − 1

2
.

Answer: (−∞,− 1

2
) ∪ (1,∞).

Now we solve x2 − x − 1 < x2.
x + 1 > 0, so x > −1.
Answer: (−1,∞).

The intersection of the two answers above is (−1,− 1

2
) ∪ (1,∞).

4(7) Prove that 0 ≤ a < b and 0 ≤ c < d imply ac < bd. Show that this statement
is false if the hypothesis a ≥ 0 is removed.

Since c ≥ 0, multiplying both sides of a < b gives ac ≤ bc.
Since b > 0, multiplying both sides of c < d gives bc < bd.
So ac ≤ bc < bd. By transitivity, we have ac < bd.

If the hypothesis a ≥ 0 is removed and we only have a < b and 0 ≤ c < d then ac < bd may
not hold.
Counterexample: a = −2, b = −1, c = 3, d = 7. Then ac = −6 and bd = −7.

7(a) Prove that |x| < 1 implies |x2 − 1| ≤ 2|x − 1|.

The inequality |x| ≤ 1 implies that −1 ≤ x ≤ 1 (we use Theorem 1.6 again). Adding 1 gives
0 ≤ x + 1 ≤ 2, and since −2 < 0 we have −2 ≤ x + 1 ≤ 2. Therefore |x + 1| ≤ 2. (Another
way to get this is to use the triangle inequality: |x + 1| ≤ |x| + |1| ≤ 1 + 1 = 2.)

Now multiply both sides of the inequality |x + 1| ≤ 2 by |x − 1| (we can do this because
|x − 1| ≥ 0):
|x + 1| · |x − 1| ≤ 2|x − 1|.
By the multiplicative property of the absolute value, |(x + 1)(x − 1)| ≤ 2|x − 1|.
So |x2 − 1| ≤ 2|x − 1|.

8(a) Find all values of n ∈ N that satisfy the inequality
1 − n

1 − n2
< 0.01.

Rewrite the inequality as
1 − n

(1 − n)(1 + n)
<

1

100
and simplify (note that n 6= 1):

1

1 + n
<

1

100
100 < 1 + n (since both 100 and 1 + n are positive)
n > 99.
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Section 1.2

1(c) Prove that the formula

n
∑

k=1

a − 1

ak
= 1 −

1

an
holds for all n ∈ N and a 6= 0.

We will prove this formula by induction on n.

Basis step: if n = 1, the formula says
1

∑

k=1

a − 1

ak
= 1−

1

a1
. The sum on the left hand side has

only one term (k = 1), so the left hand side is
a − 1

a1
=

a

a
−

1

a
= 1 −

1

a
.

Inductive step: assume that the formula holds for n = m (althought traditionally k is used
in this step instead of m, in our problem the letter k is reserved for the summation index, so

we have to use something else here), so assume that
m

∑

k=1

a − 1

ak
= 1−

1

am
is true. We want to

prove that the formula is true for n = m + 1, i.e.
m+1
∑

k=1

a − 1

ak
= 1 −

1

am+1
.

Using the inductive hypothesis, we have:

m+1
∑

k=1

a − 1

ak
=

m
∑

k=1

a − 1

ak
+

a − 1

am+1
= 1−

1

am
+

a − 1

am+1
=

1 −
1

am
+

a

am+1
−

1

am+1
= 1 −

1

am
+

1

am
−

1

am+1
= 1 −

1

am+1
. This completes the proof.

2(a) Use the Binomial Formula to prove that 2n =

n
∑

k=0

(

n

k

)

for all n ∈ N.

The Binomial Formula says that for any a, b ∈ R and any n ∈ N, (a + b)n =

n
∑

k=0

(

n

k

)

an−kbk.

In particular, if a = b = 1, it gives (1 + 1)n =

n
∑

k=0

(

n

k

)

1n−k1k, or 2n =

n
∑

k=0

(

n

k

)

.

6(a) Prove that the inequality n < 2n holds for all n ∈ N.

The proof is by induction on n.
Basis step: if n = 1, 1 < 21 is true.
Inductive step: assume that the inequality holds for n = k, i.e. k < 2k. We want to prove
that the inequality holds for n = k + 1, i.e. k + 1 < 2k+1.
We have: k + 1 < 2k + 1 < 2k + 2k = 2 · 2k = 2k+1.

6(b) Prove that the inequality n2 ≤ 2n + 1 holds for all n ∈ N.

Using the hint in the book, we first prove that the inequality 2n + 1 < 2n holds for n ≥ 3.
Basis step: if n = 3, 2 · 3 + 1 < 23 says that 7 < 8 which is true.
Inductive step: assume 2k +1 < 2k is true, we want to prove that 2(k +1)+1 < 2k+1 is true.
We have: 2(k + 1) + 1 = 2k + 3 = (2k + 1) + 2 < 2k + 2 < 2k + 2k = 2k+1.

Now we are ready to prove the inequality n2 ≤ 2n + 1 for n ≥ 3.
Basis step: if n = 3, 32 ≤ 23 + 1 is true since 9 = 8 + 1.
Inductive step: assume that k2 ≤ 2k + 1 is true, we want to prove that (k + 1)2 ≤ 2k+1 + 1
is true (where k ≥ 3).
Using the inductive hypothesis and the inequality proved above we have:
(k + 1)2 = k2 + (2k + 1) ≤ 2k + 1 + 2k = 2 · 2k + 1 = 2k+1 + 1.

Finally, we have to check our inequality for n = 1 and n = 2 since we only proved if for
n ≥ 3.
If n = 1, the inequality is 12 ≤ 21 + 1 which is true, and if n = 2, it is 22 ≤ 22 + 1 which is
also true. This completes the proof.
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