Math 171 Solutions to homework problems Spring 2005

Section 5.4

1 Evaluate the following improper integrals.
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2(b) Find all values of p € R for which f(z) = — is improperly integrable on I = (0,1).
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The limit is finite if and only if 1 —p >0, i.e. p < 1.
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Therefore the function f(x) = — s improperly integrable on I = (0,1) if and only if p < 1.
x

1 _ 3
4(e) Decide whether f(x) = $ is improperly integrable on I = (0,0).
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Yes. / ﬁdm = / %dz—i—/ %dz. We will show that each of these two
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integrals converges.

On (0,1], g(z) = 2* + cosz — 1 > 0 since g(0) = 0 and ¢'(x) = 2 — sinx > 0 for x € (0,1] (the

latter holds because ¢g'(0) = 0 and g"(x) =2 —sinz > 0).

1 —cos 11— cos
Therefore 1 — cosx < x2, so 7293 < 1. Therefore / 5 T i converges.
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On [1,00), f(z) = —— < = and/ —dx converges, therefore/ ———dzx con-
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verges.

5 Use the examples provided by Exercise 2b to show that the product of two im-
properly integrable functions might not be improperly integrable.
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Section 6.1

1 Show that Zxkzlx_—x for [z] <1l and n=0,1,....
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2(b) Prove that Z g converges and find its value.
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(The series converges because it is a linear combination of two convergent geometric series.)
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5(c) Prove that Z % diverges.
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sum of Z 2 is larger than the corresponding partial sum of Z 7 the sequence of partial
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sums of Z I;Z diverges.
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6(a) Prove that if Z ap, converges, then its partial sums s, are bounded.
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If Z ay, converges then the sequence of its partial sums {s,} converges. Since every convergent
k=1

sequence is bounded (Theorem 2.8), {s,} is bounded.
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6(b) Show that the converse of part (a) is false. Namely, show that a series Zak

k=1
may have bounded partial sums and still diverge.

Let ap, = (—=1)*. Then the sequence of partial sums of Zak is {—1,0,—1,0,...}. It is bounded
k=1
but divergent, so the series diverges.



