
Math 171 Solutions to homework problems Spring 2005

Section 5.4

1 Evaluate the following improper integrals.

(b)

∫

∞

−∞

1

1 + x2
dx = lim

c→−∞

lim
d→+∞

∫ d

c

1

1 + x2
dx = lim

c→−∞

lim
d→+∞

(arctan d − arctan c)

=
π

2
−

(

−π

2

)

= π

(c)

∫ π/2

0

cosx
3
√

sinx
dx = lim

c→0+

∫ π/2

c

cosx
3
√

sin x
dx = lim

c→0+

∫ 1

sin c

1
3
√

u
du = lim

c→0+

u2/3

2/3

∣

∣

∣

∣

1

sin c

= lim
c→0+

(

3

2
− 3(sin c)2/3

2

)

=
3

2
(substitution: u = sin x)

2(b) Find all values of p ∈ R for which f(x) =
1

xp
is improperly integrable on I = (0, 1).

if p 6= 1, then

∫ 1

0

1

xp
dx = lim

c→0+

∫ 1

c

1

xp
dx = lim

c→0+

x1−p

1 − p

∣

∣

∣

∣

1

c

= lim
c→0+

(

1

1 − p
− c1−p

1 − p

)

.

The limit is finite if and only if 1 − p > 0, i.e. p < 1.

If p = 1, then

∫ 1

0

1

x
dx = lim

c→0+

∫ 1

c

1

x
dx = lim

c→0+
ln x|1c = lim

c→0+
(ln 1 − ln c) = ∞.

Therefore the function f(x) =
1

xp
is improperly integrable on I = (0, 1) if and only if p < 1.

4(e) Decide whether f(x) =
1 − cosx

x2
is improperly integrable on I = (0,∞).

Yes.

∫

∞

0

1 − cosx

x2
dx =

∫ 1

0

1 − cosx

x2
dx+

∫

∞

1

1 − cosx

x2
dx. We will show that each of these two

integrals converges.

On (0, 1], g(x) = x2 + cosx − 1 > 0 since g(0) = 0 and g′(x) = 2x − sinx > 0 for x ∈ (0, 1] (the
latter holds because g′(0) = 0 and g′′(x) = 2 − sin x > 0).

Therefore 1 − cosx < x2, so
1 − cosx

x2
< 1. Therefore

∫ 1

0

1 − cosx

x2
dx converges.

On [1,∞), f(x) =
1 − cosx

x2
≤ 2

x2
and

∫

∞

1

1

x2
dx converges, therefore

∫

∞

1

1 − cosx

x2
dx con-

verges.

5 Use the examples provided by Exercise 2b to show that the product of two im-
properly integrable functions might not be improperly integrable.

1

x1/2
is improperly integrable on (0, 1), but

1

x1/2
· 1

x1/2
=

1

x
is not.
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Section 6.1

1 Show that
∞
∑

k=n

xk =
xn

1 − x
for |x| < 1 and n = 0, 1, . . ..

If n ≥ 1, then using Theorem 6.7, we have

∞
∑

k=n

xk = xn + xn+1 + . . . = xn−1(x1 + x2 + . . .)

xn−1

∞
∑

k=1

xk = xn−1 x

1 − x
=

xn

1 − x
.

If n = 0, then
∞
∑

k=0

xk = 1 +
∞
∑

k=1

xk = 1 +
x

1 − x
=

1

1 − x
(also, this formula was proved in class).

2(b) Prove that

∞
∑

k=1

(−1)k + 4

5k
converges and find its value.

∞
∑

k=1

(−1)k + 4

5k
=

∞
∑

k=1

(−1)k

5k
+

∞
∑

k=1

4

5k
=

∞
∑

k=1

(

−1

5

)k

+ 4
∞
∑

k=1

(

1

5

)k

=
− 1

5

1 + 1

5

+ 4 ·
1

5

1 − 1

5

= −1

6
+ 1

=
5

6
.

(The series converges because it is a linear combination of two convergent geometric series.)

5(c) Prove that

∞
∑

k=1

k + 1

k2
diverges.

∞
∑

k=1

k + 1

k2
=

∞
∑

k=1

(

1

k
+

1

k2

)

. Since

∞
∑

k=1

1

k
is divergent (it’s the harmonic series) and each partial

sum of
∞
∑

k=1

k + 1

k2
is larger than the corresponding partial sum of

∞
∑

k=1

1

k
, the sequence of partial

sums of

∞
∑

k=1

k + 1

k2
diverges.

6(a) Prove that if

∞
∑

k=1

ak converges, then its partial sums sn are bounded.

If

∞
∑

k=1

ak, converges then the sequence of its partial sums {sn} converges. Since every convergent

sequence is bounded (Theorem 2.8), {sn} is bounded.

6(b) Show that the converse of part (a) is false. Namely, show that a series

∞
∑

k=1

ak

may have bounded partial sums and still diverge.

Let ak = (−1)k. Then the sequence of partial sums of
∞
∑

k=1

ak is {−1, 0,−1, 0, . . .}. It is bounded

but divergent, so the series diverges.
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