Section 5.4

1 Evaluate the following improper integrals.
(b) $\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\lim _{c \rightarrow-\infty} \lim _{d \rightarrow+\infty} \int_{c}^{d} \frac{1}{1+x^{2}} d x=\lim _{c \rightarrow-\infty} \lim _{d \rightarrow+\infty}(\arctan d-\arctan c)$
$=\frac{\pi}{2}-\left(-\frac{\pi}{2}\right)=\pi$
(c) $\int_{0}^{\pi / 2} \frac{\cos x}{\sqrt[3]{\sin x}} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{\pi / 2} \frac{\cos x}{\sqrt[3]{\sin x}} d x=\lim _{c \rightarrow 0^{+}} \int_{\sin c}^{1} \frac{1}{\sqrt[3]{u}} d u=\left.\lim _{c \rightarrow 0^{+}} \frac{u^{2 / 3}}{2 / 3}\right|_{\sin c} ^{1}$
$=\lim _{c \rightarrow 0^{+}}\left(\frac{3}{2}-\frac{3(\sin c)^{2 / 3}}{2}\right)=\frac{3}{2} \quad$ (substitution: $u=\sin x$)

2(b) Find all values of $p \in \mathbb{R}$ for which $f(x)=\frac{1}{x^{p}}$ is improperly integrable on $I=(0,1)$.
if $p \neq 1$, then $\int_{0}^{1} \frac{1}{x^{p}} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{1}{x^{p}} d x=\left.\lim _{c \rightarrow 0^{+}} \frac{x^{1-p}}{1-p}\right|_{c} ^{1}=\lim _{c \rightarrow 0^{+}}\left(\frac{1}{1-p}-\frac{c^{1-p}}{1-p}\right)$.
The limit is finite if and only if $1-p>0$, i.e. $p<1$.
If $p=1$, then $\int_{0}^{1} \frac{1}{x} d x=\lim _{c \rightarrow 0^{+}} \int_{c}^{1} \frac{1}{x} d x=\left.\lim _{c \rightarrow 0^{+}} \ln x\right|_{c} ^{1}=\lim _{c \rightarrow 0^{+}}(\ln 1-\ln c)=\infty$.
Therefore the function $f(x)=\frac{1}{x^{p}}$ is improperly integrable on $I=(0,1)$ if and only if $p<1$.
4(e) Decide whether $f(x)=\frac{1-\cos x}{x^{2}}$ is improperly integrable on $I=(0, \infty)$.
Yes. $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x=\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x+\int_{1}^{\infty} \frac{1-\cos x}{x^{2}} d x$. We will show that each of these two integrals converges.
On $(0,1], g(x)=x^{2}+\cos x-1>0$ since $g(0)=0$ and $g^{\prime}(x)=2 x-\sin x>0$ for $x \in(0,1]$ (the latter holds because $g^{\prime}(0)=0$ and $\left.g^{\prime \prime}(x)=2-\sin x>0\right)$.
Therefore $1-\cos x<x^{2}$, so $\frac{1-\cos x}{x^{2}}<1$. Therefore $\int_{0}^{1} \frac{1-\cos x}{x^{2}} d x$ converges.
On $[1, \infty), f(x)=\frac{1-\cos x}{x^{2}} \leq \frac{2}{x^{2}}$ and $\int_{1}^{\infty} \frac{1}{x^{2}} d x$ converges, therefore $\int_{1}^{\infty} \frac{1-\cos x}{x^{2}} d x$ converges.

5 Use the examples provided by Exercise 2b to show that the product of two improperly integrable functions might not be improperly integrable.
$\frac{1}{x^{1 / 2}}$ is improperly integrable on $(0,1)$, but $\frac{1}{x^{1 / 2}} \cdot \frac{1}{x^{1 / 2}}=\frac{1}{x}$ is not.

Section 6.1

1 Show that $\sum_{k=n}^{\infty} x^{k}=\frac{x^{n}}{1-x}$ for $|x|<1$ and $n=0,1, \ldots$.
If $n \geq 1$, then using Theorem 6.7, we have $\sum_{k=n}^{\infty} x^{k}=x^{n}+x^{n+1}+\ldots=x^{n-1}\left(x^{1}+x^{2}+\ldots\right)$
$x^{n-1} \sum_{k=1}^{\infty} x^{k}=x^{n-1} \frac{x}{1-x}=\frac{x^{n}}{1-x}$.
If $n=0$, then $\sum_{k=0}^{\infty} x^{k}=1+\sum_{k=1}^{\infty} x^{k}=1+\frac{x}{1-x}=\frac{1}{1-x}$ (also, this formula was proved in class).

2(b) Prove that $\sum_{k=1}^{\infty} \frac{(-1)^{k}+4}{5^{k}}$ converges and find its value.
$\sum_{k=1}^{\infty} \frac{(-1)^{k}+4}{5^{k}}=\sum_{k=1}^{\infty} \frac{(-1)^{k}}{5^{k}}+\sum_{k=1}^{\infty} \frac{4}{5^{k}}=\sum_{k=1}^{\infty}\left(-\frac{1}{5}\right)^{k}+4 \sum_{k=1}^{\infty}\left(\frac{1}{5}\right)^{k}=\frac{-\frac{1}{5}}{1+\frac{1}{5}}+4 \cdot \frac{\frac{1}{5}}{1-\frac{1}{5}}=-\frac{1}{6}+1$ $=\frac{5}{6}$.
(The series converges because it is a linear combination of two convergent geometric series.)
5(c) Prove that $\sum_{k=1}^{\infty} \frac{k+1}{k^{2}}$ diverges.
$\sum_{k=1}^{\infty} \frac{k+1}{k^{2}}=\sum_{k=1}^{\infty}\left(\frac{1}{k}+\frac{1}{k^{2}}\right)$. Since $\sum_{k=1}^{\infty} \frac{1}{k}$ is divergent (it's the harmonic series) and each partial sum of $\sum_{k=1}^{\infty} \frac{k+1}{k^{2}}$ is larger than the corresponding partial sum of $\sum_{k=1}^{\infty} \frac{1}{k}$, the sequence of partial sums of $\sum_{k=1}^{\infty} \frac{k+1}{k^{2}}$ diverges.

6(a) Prove that if $\sum_{k=1}^{\infty} a_{k}$ converges, then its partial sums s_{n} are bounded.
If $\sum_{k=1}^{\infty} a_{k}$, converges then the sequence of its partial sums $\left\{s_{n}\right\}$ converges. Since every convergent sequence is bounded (Theorem 2.8), $\left\{s_{n}\right\}$ is bounded.

6(b) Show that the converse of part (a) is false. Namely, show that a series $\sum_{k=1}^{\infty} a_{k}$ may have bounded partial sums and still diverge.
Let $a_{k}=(-1)^{k}$. Then the sequence of partial sums of $\sum_{k=1}^{\infty} a_{k}$ is $\{-1,0,-1,0, \ldots\}$. It is bounded but divergent, so the series diverges.

