
Math 171 Solutions to homework problems Spring 2005

Section 1.3

1(f) Find the infimum and supremum of each of E = {x ∈ R | x =
1

n
− (−1)n for

n ∈ N}.

First find the first few elements of E: 2,
1

2
− 1,

1

3
+ 1,

1

4
− 1,

1

5
+ 1,

1

6
− 1, . . .

It appears that sup E = 2 and inf E = −1. We use the definitions of sup E and inf E to
prove these results.

For any x ∈ E we have x =
1

n
− (−1)n =

1

n
+ (−1)n+1 ≤ 1 + 1 = 2, so 2 is an upper bound

of E. Since 2 ∈ E, for any upper bound M of E we have M ≥ 2. This means that 2 is the
supremum of E.

For any x ∈ E we have x =
1

n
− (−1)n =

1

n
+ (−1)n+1 > 0 + (−1) = −1, so −1 is a lower

bound of E. Now we have to show that for any lower bound m of E, m ≤ −1. Let m > −1,

then m + 1 > 0, and
1

m + 1
> 0. By Archimedean principle there exists k ∈ N such that

k >
1

m + 1
. If k is even let n = k. If k is odd let n = k + 1. So we have n ∈ N such that

n is even and n >
1

m + 1
. Then

1

n
< m + 1, therefore

1

n
− (−1)n =

1

n
− 1 < m. Thus any

number m > −1 is not a lower bound, so any lower bound is less that or equal to −1, which
means that −1 is the infimum of E.

2 Show that if E is a nonempty bounded subset of Z, then both sup E and inf E

exist and belong to E.

For sup E, the proof of Theorem 1.21 can be applied here because nowhere in that proof we
use that the numbers a, b, s, etc. are positive. For inf E, we have to either modify the proof
for sup E or find another proof.

Suppose that s = sup E and apply the Approximation Property (Theorem 1.20) with ε = 1
to choose an a ∈ E such that s − 1 < a ≤ s.
Case I. s = a. Then s ∈ E, and we are done.
Case II. a < s. Apply the Approximation Property again, this time with ε = s−a, to choose
a b such that a < b ≤ s. Since both a and b are integers and b > a, b ≥ a+1 (the next integer
after a). Adding 1 to the above inequality s− 1 < a we have s < a+1. So s < a+1 ≤ b ≤ s,
therefore s < s. Contradiction. Therefore this case is not possible.

Since E is bounded, there exist m, M ∈ R such that for any x ∈ E, m ≤ x ≤ M . Then
−M ≤ −x ≤ −m, therefore −E is bounded. By the completeness axiom, −E has a supre-
mum, and then by Theorem 1.28 E has an infimum. Moreover, by Theorem 1.28
sup (−E) = − inf E. Since −E ⊂ Z, sup (−E) ∈ (−E). Then inf E = − sup (−E) ∈ E.

3 (Density of Irrationals) Prove that if a < b are real numbers, then there is an
irrational ξ ∈ R such that a < ξ < b.

Since a < b, a −
√

2 < b −
√

2. By the density of rationals theorem there exists a rational
number q such that a −

√
2 < q < b −

√
2. Then a < q +

√
2 < b.

The number ξ = q +
√

2 is irrational because if it were rational then
√

2 = ξ − q would be
rational, but it is a very well known fact that

√
2 is irrational (ask me for a proof if you don’t

know it!).

5(a) (Approximation property for infima) By modifying the proof of Theorem
1.20, prove that if a set E ⊂ R has a finite infimum and ε > 0 is any positive
number, then there is a point a ∈ E such that inf E + ε > a ≥ inf E.
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Suppose that there exists ε > 0 such that there is no point a ∈ E satisfying
inf E ≤ a ≤ inf E + ε. Then inf E + ε is a lower bound of E. By definition of inf E, any
lower bound is less than or equal to inf E, so we have inf E + ε ≤ inf E. This implies that
ε ≤ 0. Contradiction.

5(b) Give a second proof of the Approximation Property for Infima by using
Theorem 1.28.

By Theorem 1.28, − inf E = sup (−E). By the Approximation Property for Suprema, for
any ε > 0 there exists a point b ∈ (−E) such that sup (−E)− ε < b ≤ sup (−E). Let a = −b,
then b = −a, a ∈ E and − inf E − ε < −a ≤ − inf E. Multiplying this inequality by −1
gives inf E + ε > a ≥ inf E.

Section 1.4

3 Prove that the set {1, 3, . . .} is countable.

To show that the given set (let’s call it E) is countable we need to construct a bijection
between N and E. Let f : N → E be given by f(n) = 2n − 1. This function is 1-1 because
if f(n1) = f(n2) then 2n1 − 1 = 2n2 − 1, which implies 2n1 = 2n2, and then n1 = n2. This
function is onto because any odd integer is of the form 2k − 1, and it is positive if and only
if k ≥ 1.

4(c) Find f(E) and f−1(E) for f(x) = x2 + x, E = [−2, 1).

Sketch the graph of f(x):

1

r s
x

y

2

1

By definition, f(E) is the set of all values of f(x) for x ∈ E. We see from the graph that
f([−2, 1)) =

[

− 1

4
, 2
]

(the vertex of the parabola has x-coordinate − 1

2
, and it is easy to

compute the y-coordinate).

The inverse image f−1(E) of E under f is the set of all x ∈ E such that f(x) ∈ E (see
Definition 1.42). Again, from the graph we see that f−1([−2, 1)) is the interval (r, s) where
r and s are the roots of f(x) = 1. So we solve x2 + x = 1 to find these roots.
x2 + x − 1 = 0

x =
−1±

√
1 + 4

2
, so r =

−1 −
√

5

2
and s =

−1 +
√

5

2
. Answer:

(

−1−
√

5

2
,
−1 +

√
5

2

)

.

Note: Another (purely algebraic) way to find the inverse image of [−2, 1) under f is to solve
−2 ≤ x2 + x < 1.

7 Prove that

(

⋂

α∈A

Eα

)c

=
⋃

α∈A

Ec

α.
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x ∈
(

⋂

α∈A

Eα

)c

iff x 6∈
⋂

α∈A

Eα iff x 6∈ Eα for some α ∈ A iff x ∈ Ec
α for some α ∈ A iff

x ∈
⋃

α∈A

Ec

α
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