Section 2.1

1(b) Using the method of Example 2.2, prove that $2\left(1-\frac{1}{n}\right)->2$ as $n \rightarrow \infty$.
Given $\epsilon>0$, choose $N>\frac{2}{\epsilon}$. Then for any $n \geq N$,
$\left|2\left(1-\frac{1}{n}\right)-2\right|=\left|-\frac{2}{n}\right|=\frac{2}{n} \leq \frac{2}{N}<\epsilon$.

6(a) Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to the same point. Prove that $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$.

Suppose that $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to a. Then for any $\epsilon>0$, choose N_{1} such that $\forall n \geq N_{1}$, $\left|x_{n}-a\right|<\frac{\epsilon}{2}$, and choose N_{2} such that $\forall n \geq N_{2},\left|y_{n}-a\right|<\frac{\epsilon}{2}$. Let $N=\max \left(N_{1}, N_{2}\right)$. Then $\forall n \geq N$ we have
$\left|x_{n}-y_{n}\right|=\left|x_{n}-a+a-y_{n}\right| \leq\left|x_{n}-a\right|+\left|a-y_{n}\right|=\left|x_{n}-a\right|+\left|y_{n}-a\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.

6(b) Prove that the sequence $\{n\}$ does not converge.
Suppose that the sequence $\{n\}$ converges. Every convergent sequence is bounded. Then $\{n\}$ is bounded, i.e. there exists a real number M such that for any $n \in \mathbb{N},-M<n<M$. However, by Archimedean principle, for any real number M there exists a natural number n such that $n>M$. Contradiction. Therefore our assumption that $\{n\}$ converges was false.

6(c) Show that the converse of part (a) is false.
The converse of (a) is: if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are sequences such that $x_{n}-y_{n} \rightarrow 0$ as $n \rightarrow \infty$ then $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ converge to the same point.

Counterexample: Let $x_{n}=y_{n}=n$, then $x_{n}-y_{n}=0 \rightarrow 0$, but the sequences $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ do not converge.

7 (a) Let a be a fixed real number and define $\left\{x_{n}=a\right\}$ for $n \in \mathbb{N}$. Prove that the "constant" sequence x_{n} converges. (b) What does $\left\{x_{n}\right\}$ converge to?

The constant sequence is a, a, a, \ldots We guess that this sequence converges to a. Proof: given $\epsilon>0$, let $N=1$. Then $\forall n \geq N$ we have $\left|x_{n}-a\right|=|a-a|=0<\epsilon$. So $\lim _{n \rightarrow \infty} x_{n}=a$.

Section 2.2

5 Prove that given $x \in \mathbb{R}$ there is a sequence $r_{n} \in \mathbb{Q}$ such that $r_{n} \rightarrow x$ as $n \rightarrow \infty$.
By the density of rationals theorem, for any $n \in \mathbb{N}$ there exists a rational number r_{n} such that $x-\frac{1}{n}<r_{n}<x+\frac{1}{n}$. (That is, for each $n \in \mathbb{N}$ we choose such a rational number r_{n}, and so we get a sequence $\left\{r_{n}\right\}$.) Since $\lim _{n \rightarrow \infty}\left(x-\frac{1}{n}\right)=\lim _{n \rightarrow \infty}\left(x+\frac{1}{n}\right)=x$, by the Squeeze theorem $\lim _{n \rightarrow \infty} r_{n}=x$.

3 Prove that if $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ are convergent real sequences such that $y_{n} \neq 0$ and $\lim _{n \rightarrow \infty} y_{n} \neq 0$, then $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\frac{\lim _{n \rightarrow \infty} x_{n}}{\lim _{n \rightarrow \infty} y_{n}}$.

Let $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} y_{n}=y$. First we will prove that $\lim _{n \rightarrow \infty} \frac{1}{y_{n}}=\frac{1}{y}$. Let $\epsilon>0$.
Since $y_{n} \rightarrow y, \exists N_{1} \in \mathbb{N}$ such that $\forall n \geq N_{1}$ we have $\left|y_{n}-y\right|<\frac{|y|^{2} \epsilon}{2}$.
Also, $\exists N_{2} \in \mathbb{N}$ such that $\forall n \geq N_{2}$ we have $\left|y_{n}-y\right|<\frac{|y|}{2}$. If y is positive this implies that $\frac{y}{2}<y_{n}<\frac{3 y}{2}$. If y is negative then $\frac{3 y}{2}<y_{n}<\frac{y}{2}$. In either case, $\left|y_{n}\right|>\frac{|y|}{2}$.
Let $N=\max \left(N_{1}, N_{2}\right)$. Then $\forall n \geq N$ we have
$\left|\frac{1}{y_{n}}-\frac{1}{y}\right|=\left|\frac{y-y_{n}}{y_{n} y}\right|=\frac{\left|y-y_{n}\right|}{\left|y_{n}\right||y|}=\frac{\left|y_{n}-y\right|}{\left|y_{n}\right||y|}<\frac{\frac{|y|^{2} \epsilon}{2}}{\frac{|y|}{2}|y|}=\epsilon$.
Finally, $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\lim _{n \rightarrow \infty}\left(x_{n} \cdot \frac{1}{y_{n}}\right)=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} \frac{1}{y_{n}}=x \cdot \frac{1}{y}=\frac{x}{y}$.
Another approach is to show that $\lim _{n \rightarrow \infty}\left(x_{n} y-x y_{n}\right)=0$ and $\left\{\frac{1}{y_{n}}\right\}$ is bounded, then
$\lim _{n \rightarrow \infty}\left(\frac{x_{n}}{y_{n}}-\frac{x}{y}\right)=\lim _{n \rightarrow \infty} \frac{x_{n} y-x y_{n}}{y_{n} y}=\lim _{n \rightarrow \infty}\left(x_{n} y-x y_{n}\right) \frac{1}{y} \frac{1}{y_{n}}=0$.
9 Interpret a decimal expansion $0 . a_{1} a_{2} \ldots$ as $0 . a_{1} a_{2} \ldots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{a_{k}}{10^{k}}$.
Prove that (a) $0.5=0.4999 \ldots$ and (b) $1=0.999 \ldots$.
The limit on the right is the limit of the following sequence:
$x_{1}=\sum_{k=1}^{1} \frac{a_{k}}{10^{k}}=\frac{a_{1}}{10^{1}}=0 . a_{1}$
$x_{2}=\sum_{k=1}^{2} \frac{a_{k}}{10^{k}}=\frac{a_{1}}{10^{1}}+\frac{a_{2}}{10^{2}}=0 . a_{1} a_{2}$
$x_{3}=\sum_{k=1}^{3} \frac{a_{k}}{10^{k}}=\frac{a_{1}}{10^{1}}+\frac{a_{2}}{10^{2}}+\frac{a_{3}}{10^{3}}=0 . a_{1} a_{2} a_{3}$
$x_{4}=\sum_{k=1}^{4} \frac{a_{k}}{10^{k}}=\frac{a_{1}}{10^{1}}+\frac{a_{2}}{10^{2}}+\frac{a_{3}}{10^{3}}+\frac{a_{4}}{10^{4}}=0 . a_{1} a_{2} a_{3} a_{4}$
which is the infinite decimal $0 . a_{1} a_{2} a_{3} a_{4} \ldots$
(a) If $a_{1}=4$ and $a_{k}=9$ for $k \geq 2$, we have
$0.4999 \ldots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{a_{k}}{10^{k}}=\frac{4}{10}+\lim _{n \rightarrow \infty} \sum_{k=2}^{n} \frac{9}{10^{k}}=0.4+\frac{1}{10} \lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \frac{9}{10^{k}}$
$=0.4+\frac{1}{10} \lim _{n \rightarrow \infty} \sum_{k=1}^{n-1} \frac{10-1}{10^{k}} \quad$ (use exercise 1(c) on p. 17) $\quad=0.4+\frac{1}{10} \lim _{n \rightarrow \infty}\left(1-\frac{1}{10^{n-1}}\right)$
(a proof of $\lim _{n \rightarrow \infty} \frac{1}{10^{n-1}}=0$ is similar to ex. 2 on p. 36) $\quad=0.4+\frac{1}{10} \cdot 1=0.5$.
(b) $0.9999 \ldots=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \frac{9}{10^{k}}=\lim _{n \rightarrow \infty} \frac{10-1}{10^{k}}$
(use exercise 1 (c) on p. 17)
$=\lim _{n \rightarrow \infty}\left(1-\frac{1}{10^{n}}\right)=1$.

