
Math 171 Solutions to homework problems Spring 2005

Section 2.3

1 Prove that xn =
(n2 + 20n + 35) sin(n3)

n2 + n + 1
has convergent a subsequence.

lim
n→∞

n2 + 20n + 35

n2 + n + 1
= lim

n→∞

1 + 20

n
+ 35

n2

1 + 1

n
+ 1

n2

= 1, and every convergent sequence is bounded, there-

fore

{

yn =
n2 + 20n + 35

n2 + n + 1

}

is bounded, so there exists M ∈ R such that |yn| ≤ M for all

n ∈ N. Also, {zn = sin(n3)} is bounded: |zn| ≤ 1 for all n ∈ N. Therefore {xn} is bounded:
|xn| = |ynzn| = |yn||zn| ≤ M for all n ∈ N. Every bounded sequence has a convergent
subsequence, thus {xn} has a convergent subsequence.

2 Suppose that E ∈ R is a nonempty bounded set and sup E 6∈ E. Prove that there
exists a strictly increasing sequence {xn} that converges to sup E such that xn ∈ E

for all n ∈ N.

First choose any element x1 ∈ E. Since sup E 6∈ E, x1 < sup E. By the Approximation
Property for suprema, for each n ≥ 2 there exists xn ∈ E such that

max( sup E −
1

n
, xn−1) < xn < sup E. Then we get a sequence such that x1 < x2 < x3 < . . .,

i.e. the sequence {xn} is strictly increasing. Also we have sup E −
1

n
< xn < sup E. Since

lim
n→∞

sup E −
1

n
= lim

n→∞

sup E = sup E, by the Squeeze theorem lim
n→∞

xn = sup E.

Section 2.4

1 Prove (without using Theorem 2.29) that the sum of two Cauchy sequences is
Cauchy.

Let {xn} and {yn} be Cauchy.

Then for any ε > 0 there exists N1 ∈ N such that for any n, m ≥ N1, |xn − xm| <
ε

2
,

and there exists N2 ∈ N such that for any n, m ≥ N2, |yn − ym| <
ε

2
.

Let N = max(N1, N2). Then for any n, m ≥ N ,

|(xn + yn) − (xm + ym)| = |(xn − xm) + (yn − ym)| ≤ |xn − xm| + |yn − ym| <
ε

2
+

ε

2
= ε.

Thus {xn + yn} is Cauchy.

2 Prove that if {xn} is a sequence that satisfies |xn| ≤
1 + n

1 + n + 2n2
for all n ∈ N, then

{xn} is Cauchy.

We have −
1 + n

1 + n + 2n2
≤ xn ≤

1 + n

1 + n + 2n2
.

lim
n→∞

1 + n

1 + n + 2n2
= lim

n→∞

1

n2 + 1

n

1

n2 + 1

n
+ 2

= 0, and similarly lim
n→∞

−
1 + n

1 + n + 2n2
= 0. Therefore

by the Squeeze theorem lim
n→∞

xn = 0, so {xn} is convergent. Then it is Cauchy.

3 Suppose that xn ∈ N for all n ∈ N. If {xn} is Cauchy, prove that there are numbers
a and N such that xn = a for all n ≥ N .

Since {xn} is Cauchy, there exists N ∈ N such that for all n, m ≥ N , |xn − xm| < 1 (use the
definition with ε = 1). In particular (if m = N), for all n ≥ N , |xn − xN | < 1. Let a = xN .
Then we have that for all n ≥ N , |xn − a| < 1. Since both xn and a are integers, xn = a.
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Section 3.1

1(a) Using Definition 3.1, prove that lim
x→2

x2 − x + 1 = 3.

Given ε > 0, let δ = min
(

1,
ε

4

)

. Then for any x such that 0 < |x−2| < δ, we have |x−2| < 1

and |x − 2| <
ε

4
. The first inequality implies that −1 < x − 2 < 1, so 2 < x + 1 < 4, so

|x + 1| < 4 (see below why we need this).

So for any x such that 0 < |x − 2| < δ, we have

|x2 − x + 1 − 3| = |x2 − x − 2| = |(x − 2)(x + 1)| = |x − 2||x + 1| <
ε

4
· 4 = ε.

3(d) Evaluate the limit lim
x→1

xn − 1

x − 1
, n ∈ N, using results from this section.

lim
x→1

xn − 1

x − 1
= lim

x→1

(x − 1)(xn−1 + xn−2 + . . . + x + 1)

x − 1
= lim

x→1

(xn−1 + xn−2 + . . . + x + 1) = n.

5 Prove Theorem 3.9: Suppose that a ∈ R, I is an open interval that contains a,
and f , g, h are real functions defined everywhere on I except possibly at a, then
(i) If g(x) ≤ h(x) ≤ f(x) for all x ∈ I\{a}, and lim

x→a
f(x) = lim

x→a
g(x) = L, then the limit

of h(x) exists, as x → a, and lim
x→a

h(x) = L.

(ii) If |g(x)| ≤ M for all x ∈ I\{a} and f(x) → 0 as x → a, then lim
x→a

f(x)g(x) = 0.

(i) Since lim
x→a

f(x) = L, by the sequential characterization for limits, for any sequence xn con-

verging to a and such that xn ∈ I\{a}, lim
n→∞

f(xn) = L.

Since lim
x→a

g(x) = L, by the sequential characterization for limits, for any sequence xn converg-

ing to a and such that xn ∈ I\{a}, lim
n→∞

g(xn) = L.

Since g(xn) ≤ h(xn) ≤ f(xn) for all n ∈ N ,by the Squeeze theorem for sequences we have
lim

n→∞

h(xn) = L. Then by the sequential characterization for limits again, lim
x→a

h(x) = L.

(ii) Since lim
x→a

f(x) = 0, by the sequential characterization for limits, for any sequence xn

converging to a and such that xn ∈ I\{a}, lim
n→∞

f(xn) = 0.

Since |g(xn)| ≤ M for all n ∈ N, by the second part of the Squeeze theorem for sequences
we have lim

n→∞

f(xn)g(xn) = 0. Then by the sequential characterization for limits again,

lim
x→a

f(x)g(x) = 0.
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