Math 171 Solutions to homework problems

Section 2.3

1 Prove that $x_n = \frac{(n^2 + 20n + 35)\sin(n^3)}{n^2 + n + 1}$ has convergent a subsequence.

 $\lim_{n \to \infty} \frac{n^2 + 20n + 35}{n^2 + n + 1} = \lim_{n \to \infty} \frac{1 + \frac{20}{n} + \frac{35}{n^2}}{1 + \frac{1}{n} + \frac{1}{n^2}} = 1, \text{ and every convergent sequence is bounded, there-fore } \left\{ y_n = \frac{n^2 + 20n + 35}{n^2 + n + 1} \right\} \text{ is bounded, so there exists } M \in \mathbb{R} \text{ such that } |y_n| \leq M \text{ for all } n \in \mathbb{N}. \text{ Also, } \{z_n = \sin(n^3)\} \text{ is bounded: } |z_n| \leq 1 \text{ for all } n \in \mathbb{N}. \text{ Therefore } \{x_n\} \text{ is bounded: } |x_n| = |y_n z_n| = |y_n| |z_n| \leq M \text{ for all } n \in \mathbb{N}. \text{ Every bounded sequence has a convergent subsequence, thus } \{x_n\} \text{ has a convergent subsequence.}$

2 Suppose that $E \in \mathbb{R}$ is a nonempty bounded set and $\sup E \notin E$. Prove that there exists a strictly increasing sequence $\{x_n\}$ that converges to $\sup E$ such that $x_n \in E$ for all $n \in \mathbb{N}$.

First choose any element $x_1 \in E$. Since $\sup E \notin E$, $x_1 < \sup E$. By the Approximation Property for suprema, for each $n \ge 2$ there exists $x_n \in E$ such that

 $\max(\sup E - \frac{1}{n}, x_{n-1}) < x_n < \sup E. \text{ Then we get a sequence such that } x_1 < x_2 < x_3 < \dots,$ i.e. the sequence $\{x_n\}$ is strictly increasing. Also we have $\sup E - \frac{1}{n} < x_n < \sup E.$ Since $\lim_{n \to \infty} \sup E - \frac{1}{n} = \lim_{n \to \infty} \sup E = \sup E$, by the Squeeze theorem $\lim_{n \to \infty} x_n = \sup E.$

Section 2.4

1 Prove (without using Theorem 2.29) that the sum of two Cauchy sequences is Cauchy.

Let $\{x_n\}$ and $\{y_n\}$ be Cauchy. Then for any $\epsilon > 0$ there exists $N_1 \in \mathbb{N}$ such that for any $n, m \ge N_1$, $|x_n - x_m| < \frac{\epsilon}{2}$, and there exists $N_2 \in \mathbb{N}$ such that for any $n, m \ge N_2$, $|y_n - y_m| < \frac{\epsilon}{2}$. Let $N = \max(N_1, N_2)$. Then for any $n, m \ge N$, $|(x_n + y_n) - (x_m + y_m)| = |(x_n - x_m) + (y_n - y_m)| \le |x_n - x_m| + |y_n - y_m| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$. Thus $\{x_n + y_n\}$ is Cauchy.

2 Prove that if $\{x_n\}$ is a sequence that satisfies $|x_n| \le \frac{1+n}{1+n+2n^2}$ for all $n \in \mathbb{N}$, then $\{x_n\}$ is Cauchy.

We have $-\frac{1+n}{1+n+2n^2} \le x_n \le \frac{1+n}{1+n+2n^2}$. $\lim_{n\to\infty} \frac{1+n}{1+n+2n^2} = \lim_{n\to\infty} \frac{\frac{1}{n^2} + \frac{1}{n}}{\frac{1}{n^2} + \frac{1}{n} + 2} = 0, \text{ and similarly } \lim_{n\to\infty} -\frac{1+n}{1+n+2n^2} = 0.$ Therefore by the Squeeze theorem $\lim_{n\to\infty} x_n = 0$, so $\{x_n\}$ is convergent. Then it is Cauchy.

3 Suppose that $x_n \in \mathbb{N}$ for all $n \in \mathbb{N}$. If $\{x_n\}$ is Cauchy, prove that there are numbers a and N such that $x_n = a$ for all $n \ge N$.

Since $\{x_n\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that for all $n, m \geq N$, $|x_n - x_m| < 1$ (use the definition with $\epsilon = 1$). In particular (if m = N), for all $n \geq N$, $|x_n - x_N| < 1$. Let $a = x_N$. Then we have that for all $n \geq N$, $|x_n - a| < 1$. Since both x_n and a are integers, $x_n = a$.

Section 3.1

1(a) Using Definition 3.1, prove that $\lim_{x\to 2} x^2 - x + 1 = 3$.

Given $\epsilon > 0$, let $\delta = \min\left(1, \frac{\epsilon}{4}\right)$. Then for any x such that $0 < |x-2| < \delta$, we have |x-2| < 1 and $|x-2| < \frac{\epsilon}{4}$. The first inequality implies that -1 < x-2 < 1, so 2 < x+1 < 4, so |x+1| < 4 (see below why we need this).

So for any x such that $0 < |x-2| < \delta$, we have $|x^2 - x + 1 - 3| = |x^2 - x - 2| = |(x-2)(x+1)| = |x-2||x+1| < \frac{\epsilon}{4} \cdot 4 = \epsilon$.

3(d) Evaluate the limit $\lim_{x\to 1} rac{x^n-1}{x-1}, n\in\mathbb{N}$, using results from this section.

$$\lim_{x \to 1} \frac{x^n - 1}{x - 1} = \lim_{x \to 1} \frac{(x - 1)(x^{n-1} + x^{n-2} + \dots + x + 1)}{x - 1} = \lim_{x \to 1} (x^{n-1} + x^{n-2} + \dots + x + 1) = n.$$

5 Prove Theorem 3.9: Suppose that $a \in \mathbb{R}$, I is an open interval that contains a, and f, g, h are real functions defined everywhere on I except possibly at a, then (i) If $g(x) \leq h(x) \leq f(x)$ for all $x \in I \setminus \{a\}$, and $\lim_{x \to a} f(x) = \lim_{x \to a} g(x) = L$, then the limit of h(x) exists, as $x \to a$, and $\lim_{x \to a} h(x) = L$. (ii) If $|g(x)| \leq M$ for all $x \in I \setminus \{a\}$ and $f(x) \to 0$ as $x \to a$, then $\lim_{x \to a} f(x)g(x) = 0$.

(i) Since $\lim_{x \to a} f(x) = L$, by the sequential characterization for limits, for any sequence x_n con-

verging to a and such that $x_n \in I \setminus \{a\}$, $\lim_{n \to \infty} f(x_n) = L$. Since $\lim_{x \to a} g(x) = L$, by the sequential characterization for limits, for any sequence x_n converging to a and such that $x_n \in I \setminus \{a\}$, $\lim_{x \to a} g(x_n) = L$.

ing to a and such that $x_n \in I \setminus \{a\}$, $\lim_{n \to \infty} g(x_n) = L$. Since $g(x_n) \leq h(x_n) \leq f(x_n)$ for all $n \in \mathbb{N}$, by the Squeeze theorem for sequences we have $\lim_{n \to \infty} h(x_n) = L$. Then by the sequential characterization for limits again, $\lim_{x \to a} h(x) = L$.

(ii) Since $\lim_{x\to a} f(x) = 0$, by the sequential characterization for limits, for any sequence x_n converging to a and such that $x_n \in I \setminus \{a\}$, $\lim_{n \to \infty} f(x_n) = 0$.

Since $|g(x_n)| \leq M$ for all $n \in \mathbb{N}$, by the second part of the Squeeze theorem for sequences we have $\lim_{n \to \infty} f(x_n)g(x_n) = 0$. Then by the sequential characterization for limits again, $\lim_{n \to \infty} f(x)g(x) = 0$.