Section 2.3

1 Prove that $x_{n}=\frac{\left(n^{2}+20 n+35\right) \sin \left(n^{3}\right)}{n^{2}+n+1}$ has convergent a subsequence. $\lim _{n \rightarrow \infty} \frac{n^{2}+20 n+35}{n^{2}+n+1}=\lim _{n \rightarrow \infty} \frac{1+\frac{20}{n}+\frac{35}{n^{2}}}{1+\frac{1}{n}+\frac{1}{n^{2}}}=1$, and every convergent sequence is bounded, therefore $\left\{y_{n}=\frac{n^{2}+20 n+35}{n^{2}+n+1}\right\}$ is bounded, so there exists $M \in \mathbb{R}$ such that $\left|y_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Also, $\left\{z_{n}=\sin \left(n^{3}\right)\right\}$ is bounded: $\left|z_{n}\right| \leq 1$ for all $n \in \mathbb{N}$. Therefore $\left\{x_{n}\right\}$ is bounded: $\left|x_{n}\right|=\left|y_{n} z_{n}\right|=\left|y_{n}\right|\left|z_{n}\right| \leq M$ for all $n \in \mathbb{N}$. Every bounded sequence has a convergent subsequence, thus $\left\{x_{n}\right\}$ has a convergent subsequence.

2 Suppose that $E \in \mathbb{R}$ is a nonempty bounded set and $\sup E \notin E$. Prove that there exists a strictly increasing sequence $\left\{x_{n}\right\}$ that converges to sup E such that $x_{n} \in E$ for all $n \in \mathbb{N}$.

First choose any element $x_{1} \in E$. Since sup $E \notin E, x_{1}<\sup E$. By the Approximation Property for suprema, for each $n \geq 2$ there exists $x_{n} \in E$ such that $\max \left(\sup E-\frac{1}{n}, x_{n-1}\right)<x_{n}<\sup E$. Then we get a sequence such that $x_{1}<x_{2}<x_{3}<\ldots$, i.e. the sequence $\left\{x_{n}\right\}$ is strictly increasing. Also we have sup $E-\frac{1}{n}<x_{n}<$ sup E. Since $\lim _{n \rightarrow \infty} \sup E-\frac{1}{n}=\lim _{n \rightarrow \infty} \sup E=\sup E$, by the Squeeze theorem $\lim _{n \rightarrow \infty} x_{n}=\sup E$.

Section 2.4

1 Prove (without using Theorem 2.29) that the sum of two Cauchy sequences is Cauchy.

Let $\left\{x_{n}\right\}$ and $\left\{y_{n}\right\}$ be Cauchy.
Then for any $\epsilon>0$ there exists $N_{1} \in \mathbb{N}$ such that for any $n, m \geq N_{1},\left|x_{n}-x_{m}\right|<\frac{\epsilon}{2}$,
and there exists $N_{2} \in \mathbb{N}$ such that for any $n, m \geq N_{2},\left|y_{n}-y_{m}\right|<\frac{\epsilon}{2}$.
Let $N=\max \left(N_{1}, N_{2}\right)$. Then for any $n, m \geq N$,
$\left|\left(x_{n}+y_{n}\right)-\left(x_{m}+y_{m}\right)\right|=\left|\left(x_{n}-x_{m}\right)+\left(y_{n}-y_{m}\right)\right| \leq\left|x_{n}-x_{m}\right|+\left|y_{n}-y_{m}\right|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon$.
Thus $\left\{x_{n}+y_{n}\right\}$ is Cauchy.
2 Prove that if $\left\{x_{n}\right\}$ is a sequence that satisfies $\left|x_{n}\right| \leq \frac{1+n}{1+n+2 n^{2}}$ for all $n \in \mathbb{N}$, then $\left\{x_{n}\right\}$ is Cauchy.
We have $-\frac{1+n}{1+n+2 n^{2}} \leq x_{n} \leq \frac{1+n}{1+n+2 n^{2}}$.
$\lim _{n \rightarrow \infty} \frac{1+n}{1+n+2 n^{2}}=\lim _{n \rightarrow \infty} \frac{\frac{1}{n^{2}}+\frac{1}{n}}{\frac{1}{n^{2}}+\frac{1}{n}+2}=0$, and similarly $\lim _{n \rightarrow \infty}-\frac{1+n}{1+n+2 n^{2}}=0$. Therefore by the Squeeze theorem $\lim _{n \rightarrow \infty} x_{n} \stackrel{n}{=} 0$, so $\left\{x_{n}\right\}$ is convergent. Then it is Cauchy.

3 Suppose that $x_{n} \in \mathbb{N}$ for all $n \in \mathbb{N}$. If $\left\{x_{n}\right\}$ is Cauchy, prove that there are numbers a and N such that $x_{n}=a$ for all $n \geq N$.

Since $\left\{x_{n}\right\}$ is Cauchy, there exists $N \in \mathbb{N}$ such that for all $n, m \geq N,\left|x_{n}-x_{m}\right|<1$ (use the definition with $\epsilon=1$). In particular (if $m=N$), for all $n \geq N,\left|x_{n}-x_{N}\right|<1$. Let $a=x_{N}$. Then we have that for all $n \geq N,\left|x_{n}-a\right|<1$. Since both x_{n} and a are integers, $x_{n}=a$.

Section 3.1

1(a) Using Definition 3.1, prove that $\lim _{x \rightarrow 2} x^{2}-x+1=3$.
Given $\epsilon>0$, let $\delta=\min \left(1, \frac{\epsilon}{4}\right)$. Then for any x such that $0<|x-2|<\delta$, we have $|x-2|<1$ and $|x-2|<\frac{\epsilon}{4}$. The first inequality implies that $-1<x-2<1$, so $2<x+1<4$, so $|x+1|<4$ (see below why we need this).

So for any x such that $0<|x-2|<\delta$, we have $\left|x^{2}-x+1-3\right|=\left|x^{2}-x-2\right|=|(x-2)(x+1)|=|x-2||x+1|<\frac{\epsilon}{4} \cdot 4=\epsilon$.

3(d) Evaluate the limit $\lim _{x \rightarrow 1} \frac{x^{n}-1}{x-1}, n \in \mathbb{N}$, using results from this section.
$\lim _{x \rightarrow 1} \frac{x^{n}-1}{x-1}=\lim _{x \rightarrow 1} \frac{(x-1)\left(x^{n-1}+x^{n-2}+\ldots+x+1\right)}{x-1}=\lim _{x \rightarrow 1}\left(x^{n-1}+x^{n-2}+\ldots+x+1\right)=n$.

5 Prove Theorem 3.9: Suppose that $a \in \mathbb{R}, I$ is an open interval that contains a, and f, g, h are real functions defined everywhere on I except possibly at a, then (i) If $g(x) \leq h(x) \leq f(x)$ for all $x \in I \backslash\{a\}$, and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} g(x)=L$, then the limit of $h(x)$ exists, as $x \rightarrow a$, and $\lim _{x \rightarrow a} h(x)=L$.
(ii) If $|g(x)| \leq M$ for all $x \in I \backslash\{a\}$ and $f(x) \rightarrow 0$ as $x \rightarrow a$, then $\lim _{x \rightarrow a} f(x) g(x)=0$.
(i) Since $\lim _{x \rightarrow a} f(x)=L$, by the sequential characterization for limits, for any sequence x_{n} converging to a and such that $x_{n} \in I \backslash\{a\}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=L$.
Since $\lim _{x \rightarrow a} g(x)=L$, by the sequential characterization for limits, for any sequence x_{n} converging to a and such that $x_{n} \in I \backslash\{a\}, \lim _{n \rightarrow \infty} g\left(x_{n}\right)=L$.
Since $g\left(x_{n}\right) \leq h\left(x_{n}\right) \leq f\left(x_{n}\right)$ for all $n \in \mathbb{N}$, by the Squeeze theorem for sequences we have $\lim _{n \rightarrow \infty} h\left(x_{n}\right)=L$. Then by the sequential characterization for limits again, $\lim _{x \rightarrow a} h(x)=L$.
(ii) Since $\lim _{x \rightarrow a} f(x)=0$, by the sequential characterization for limits, for any sequence x_{n} converging to a and such that $x_{n} \in I \backslash\{a\}, \lim _{n \rightarrow \infty} f\left(x_{n}\right)=0$.
Since $\left|g\left(x_{n}\right)\right| \leq M$ for all $n \in \mathbb{N}$, by the second part of the Squeeze theorem for sequences we have $\lim _{n \rightarrow \infty} f\left(x_{n}\right) g\left(x_{n}\right)=0$. Then by the sequential characterization for limits again, $\lim _{x \rightarrow a} f(x) g(x)=0$.

