## Section 3.2

1 Using definitions (rather than limit theorems) prove that $\lim _{x \rightarrow a^{+}} f(x)$ exists and equals $L$ in each of the following cases.
(a) $f(x)=\frac{|x|}{x}, a=0$, and $L=1$.

Given $\varepsilon>0$, set $\delta=1$. Then for any $x \in(0, \delta)$ we have $x>0$, therefore $|x|=x$, so $\left|\frac{|x|}{x}-1\right|=\left|\frac{x}{x}-1\right|=0<\varepsilon$.
(d) $f(x)=\frac{1}{x^{2}-1}, a=1$, and $L=\infty$.

Let $M \in \mathbb{R}$ be given. If $M>0$, set $\delta=\min \left(1, \frac{1}{3 M}\right)$. Then for any $x \in(1,1+\delta)$ we have $1<x<2$ and $1<x<1+\frac{1}{3 M}$. The first inequality implies that $2<x+1<3$. The second inequality implies that $0<x-1<\frac{1}{3 M}$. Therefore $0<x^{2}-1=(x+1) \cdot(x-1)<3 \cdot \frac{1}{3 M}=\frac{1}{M}$. Then $\frac{1}{x^{2}-1}>M$.
If $M \leq 0$, then by the above proof there exists $\delta$ such that for any $x \in(1,1+\delta)$,
$\frac{1}{x^{2}-1}>1>M$.

3(e) Evaluate the limit if it exists: $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}}$.
Since $\frac{\sin x}{x^{2}}=\sin x \cdot \frac{1}{x^{2}}, \sin x$ is bounded, and $\lim _{x \rightarrow \infty} \frac{1}{x^{2}}=0$, by the second part of the Squeeze theorem $\lim _{x \rightarrow \infty} \frac{\sin x}{x^{2}}=0$.

4 Recall that a polynomial of degree $n$ is a function of the form
$P(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$ where $a_{j} \in \mathbb{R}$ for $j=0,1, \ldots, n$ and $a_{n} \neq 0$.
(a) Prove that $\lim _{x \rightarrow a} x^{n}=a^{n}$ for $n=0,1, \ldots$.

Proof by induction.
Basis step. If $n=0, \lim _{x \rightarrow a} x^{0}=\lim _{x \rightarrow a} 1=1^{0}$.
Inductive step. Suppose that $\lim _{x \rightarrow a} x^{k}=a^{k}$ is true, then
$\lim _{x \rightarrow a} x^{k+1}=\lim _{x \rightarrow a} x^{k} \cdot x=\lim _{x \rightarrow a} x^{k} \cdot \lim _{x \rightarrow a} x=a^{k} \cdot a=a^{k+1}$.
(b) Prove that if $P$ is a polynomial, then $\lim x \rightarrow a P(x)=P(a)$ for every $a \in \mathbb{R}$.

Proof by (strong) induction.
Basis step. If $n=0$, then $P(x)=a_{0}$, and $\lim _{x \rightarrow a} P(x)=\lim _{x \rightarrow a} a_{0}=a_{0}=P(a)$.
Inductive step. Suppose that the statement is true for any polynomial of degree less than or equal to $k$. We want to prove the statement is true for any polynomial of degree $k+1$. Let $P(x)=a_{k+1} x^{k+1}+a_{k} x^{k}+\ldots+a_{1} x+a_{0}$ and let $Q(x)=a_{k} x^{k}+\ldots+a_{1} x+a_{0}$. Then the statement is true for $Q(x)$. Therefore $\lim _{x \rightarrow a} P(x)=\lim _{x \rightarrow a}\left(a_{k+1} x^{k+1}+Q(x)\right)=a_{k+1} a^{k+1}+Q(a)=P(a)$.
(c) Suppose that $P$ is a polynomial and $P(a)>0$. Prove that $\frac{P(x)}{x-a} \rightarrow \infty$ as $x \rightarrow a^{+}$, $\frac{P(x)}{x-a} \rightarrow-\infty$ as $x \rightarrow a^{-}$, but $\lim _{x \rightarrow a} \frac{P(x)}{x-a}$ does not exist.
Part 1. Let $M \in \mathbb{R}$ be given. Without loss of generality (see problem 1(d)) we can assume that $M>0$.
Since $P(a)>0$, by the proof of the sign-preserving property there exists $\delta>0$ such that $a<x<a+\delta$ implies $P(x)>\frac{P(a)}{2}$. Let $\delta^{\prime}=\min \left(\delta, \frac{P(a)}{2 M}\right)$.

Then $a<x<a+\delta^{\prime}$ implies that $0<x-a<\delta^{\prime}$, therefore $\frac{P(x)}{x-a}>\frac{P(a)}{2(x-a)}>\frac{P(a)}{2 \delta^{\prime}} \geq$ $\frac{P(a)}{2 \frac{P(a)}{2 M}}=M$.

Part 2. Let $M \in \mathbb{R}$ be given. Without loss of generality (similarly to above) we can assume that $M<0$.
As in part 1, there exists $\delta>0$ such that $a-\delta<x<a$ implies $P(x)>\frac{P(a)}{2}$.
Let $\delta^{\prime}=\min \left(\delta,-\frac{P(a)}{2 M}\right)$. Then $\delta^{\prime} \leq-\frac{P(a)}{2 M}$.
Then $a-\delta^{\prime}<x<a$ implies that $x-a<0$, therefore $\frac{P(x)}{x-a}<\frac{P(a)}{2(x-a)}$.
Also, $x-a>-\delta^{\prime} \geq \frac{P(a)}{2 M}$, so $\frac{1}{x-a}<\frac{1}{\frac{P(a)}{2 M}}$. It follows that $\frac{P(x)}{x-a}<\frac{P(a)}{2(x-a)}<\frac{P(a)}{-2 \delta} \leq$ $\frac{P(a)}{2 \frac{P(a)}{2 M}}=M$.

Part 3. Since $\lim _{x \rightarrow a^{+}} \frac{P(x)}{x-a}$ and $\lim _{x \rightarrow a^{-}} \frac{P(x)}{x-a}$ are not equal, $\lim _{x \rightarrow a} \frac{P(x)}{x-a}$ does not exist.

## Section 3.3

5 Show that there exist nowhere continuous functions $f$ and $g$ whose sum $f+g$ is continuous on $\mathbb{R}$. Show that the same is true for the product of functions.

Example: $f(x)=\left\{\begin{array}{ll}1 & \text { if } x \in \mathbb{Q} \\ 0 & \text { if } x \notin \mathbb{Q}\end{array}\right.$ and $g(x)=\left\{\begin{array}{ll}0 & \text { if } x \in \mathbb{Q} \\ 1 & \text { if } x \notin \mathbb{Q}\end{array}\right.$.
Then $f(x)+g(x)=1$ and $f(x) g(x)=0$ for all $x \in \mathbb{R}$.

