Section 3.3

1(b) Prove that there is at least one $x \in \mathbb{R}$ that satisfies $e^x = \cos x + 1$.

Rewrite the given equation as $e^x - \cos x - 1 = 0$. Let $f(x) = e^x - \cos x - 1$. This function is continuous on \mathbb{R} . $f(0) = e^0 - \cos(0) - 1 = -1$ and $f(\pi) = e^\pi - \cos(\pi) - 1 = e^\pi > 0$. By the intermediate value theorem there exists a number $c \in (0, \pi)$ such that f(c) = 0. Thus the equation has a root.

4 Suppose that f is a real-valued function of a real variable. If f is continuous at a with f(a) < M for some $M \in \mathbb{R}$ prove that there is an open interval I containing a such that f(x) < M for all $x \in I$.

Consider the function g(x) = M - f(x). Then g(x) is continuous and g(a) = M - f(a) > 0. By the sign preserving property $g(x) > \varepsilon$ for some $\varepsilon > 0$ on some open interval containing a. So M - f(x) = g(x) > 0, and therefore f(x) < M on that interval.

10 If $f : \mathbb{R} \to \mathbb{R}$ is continuous and $\lim_{x \to \infty} f(x) = \lim_{x \to -\infty} f(x) = \infty$, prove that f has a minimum on \mathbb{R} , i.e. there is an $x_m \in \mathbb{R}$ such that $f(x_m) = \inf_{x \in \mathbb{R}} f(x)$.

Let a be any real number, and let M = f(a).

Since $\lim_{x\to\infty} f(x) = \infty$, there exists M_1 such that $x > M_1$ implies f(x) > M. Since f(a) = M, $a \le M_1$.

Since $\lim_{x \to -\infty} f(x) = \infty$, there exists M_2 such that $x < M_2$ implies f(x) > M. Since f(a) = M, $a \ge M_2$. So $a \in [M_2, M_1]$.

By the extreme value theorem f attains its minimum m on the interval $[M_2, M_1]$, i.e. there exists $x_m \in [M_2, M_1]$ such that $f(x) \ge f(x_m)$ for all $x \in [M_2, M_1]$.

For $x \notin [M_2, M_1]$ we have $f(x) > M = f(a) \ge f(x_m)$. Thus we have $f(x) \ge f(x_m)$ for all $x \in \mathbb{R}$, so x_m is an absolute minimum of f.

Section 3.4

2(c) Prove that any polynomial f(x) is uniformly continuous on (0,1).

Last week (see problem 4(b) in 3.2) we proved that for any polynomial function f(x) and any real number a, $\lim_{x\to a} f(x) = f(a)$. By remark 3.20, f(x) is continuous at every point a. In particular, it is continuous on [0,1]. By theorem 3.39, it is uniformly continuous on [0,1]. Then it is uniformly continuous on (0,1) (since it is a subset of [0,1]).

5(a) Let I be a boundend interval. Prove that if $f: I \to \mathbb{R}$ is uniformly continuous on I, then f is bounded on I.

If I is closed, then f is bounded by theorem 3.26. If I is (a,b), (a,b], or [a,b), then since f is uniformly continuous on I, it is uniformly continuous on (a,b). Then by theorem 3.40 there exists a continuous function g on [a,b] such that g(x) = f(x) on (a,b). Moreover, if I includes a or b then f = g at that point, so f = g on I. By theorem 3.26 g is bounded on [a,b]. Therefore g is bounded on I, and so f is bounded on I.

3 5(b) Prove that (a) may be false if I is unbounded or if f is merely continuous.

Counterexample 1 (if I is unbounded). Let f(x) = x on R. It is uniformly continuous, but not bounded.

Counterexample 2 (if f is merely continuous). Let $f(x) = \frac{1}{x}$ on (0,1). The interval is bounded, but f is not bounded.