
Math 171 Solutions to homework problems Spring 2005

Section 3.3

1(b) Prove that there is at least one x ∈ R that satisfies ex = cosx + 1.

Rewrite the given equation as ex − cosx − 1 = 0. Let f(x) = ex − cosx − 1. This function
is continuous on R. f(0) = e0 − cos(0) − 1 = −1 and f(π) = eπ − cos(π) − 1 = eπ > 0. By
the intermediate value theorem there exists a number c ∈ (0, π) such that f(c) = 0. Thus the
equation has a root.

4 Suppose that f is a real-valued function of a real variable. If f is continuous at
a with f(a) < M for some M ∈ R prove that there is an open interval I containing
a such that f(x) < M for all x ∈ I.

Consider the function g(x) = M − f(x). Then g(x) is continuous and g(a) = M − f(a) > 0.
By the sign preserving property g(x) > ε for some ε > 0 on some open interval containing a.
So M − f(x) = g(x) > 0, and therefore f(x) < M on that interval.

10 If f : R → R is continuous and lim
x→∞

f(x) = lim
x→−∞

f(x) = ∞, prove that f has a

minimum on R, i.e. there is an xm ∈ R such that f(xm) = infx∈R f(x).

Let a be any real number, and let M = f(a).

Since lim
x→∞

f(x) = ∞, there exists M1 such that x > M1 implies f(x) > M . Since f(a) = M ,

a ≤ M1.

Since lim
x→−∞

f(x) = ∞, there exists M2 such that x < M2 implies f(x) > M . Since f(a) = M ,

a ≥ M2. So a ∈ [M2, M1].

By the extreme value theorem f attains its minimum m on the interval [M2, M1], i.e. there
exists xm ∈ [M2, M1] such that f(x) ≥ f(xm) for all x ∈ [M2, M1].

For x 6∈ [M2, M1] we have f(x) > M = f(a) ≥ f(xm). Thus we have f(x) ≥ f(xm) for all
x ∈ R, so xm is an absolute minimum of f .

Section 3.4

2(c) Prove that any polinomial f(x) is uniformly continuous on (0, 1).

Last week (see problem 4(b) in 3.2) we proved that for any polynomial function f(x) and any
real number a, lim

x→a

f(x) = f(a). By remark 3.20, f(x) is continuous at every point a. In

particular, it is continuous on [0, 1]. By theorem 3.39, it is uniformly continuous on [0, 1].
Then it is uniformly continuous on (0, 1) (since it is a subset of [0, 1]).

5(a) Let I be a boundend interval. Prove that if f : I → R is uniformly continuous
on I, then f is bounded on I.

If I is closed, then f is bounded by theorem 3.26. If I is (a, b), (a, b], or [a, b), then since
f is uniformly continuous on I, it is uniformly continuous on (a, b). Then by theorem 3.40
there exists a continuous function g on [a, b] such that g(x) = f(x) on (a, b). Moreover, if I

includes a or b then f = g at that point, so f = g on I. By theorem 3.26 g is bounded on
[a, b]. Therefore g is bounded on I, and so f is bounded on I.

3 5(b) Prove that (a) may be false if I is unbounded or if f is merely continuous.

Counterexample 1 (if I is unbounded). Let f(x) = x on R. It is uniformly continuous, but
not bounded.

Counterexample 2 (if f is merely continuous). Let f(x) =
1

x
on (0, 1). The interval is bounded,

but f is not bounded.


