Section 3.3

1(b) Prove that there is at least one $x \in \mathbb{R}$ that satisfies $e^{x}=\cos x+1$.
Rewrite the given equation as $e^{x}-\cos x-1=0$. Let $f(x)=e^{x}-\cos x-1$. This function is continuous on \mathbb{R}. $f(0)=e^{0}-\cos (0)-1=-1$ and $f(\pi)=e^{\pi}-\cos (\pi)-1=e^{\pi}>0$. By the intermediate value theorem there exists a number $c \in(0, \pi)$ such that $f(c)=0$. Thus the equation has a root.

4 Suppose that f is a real-valued function of a real variable. If f is continuous at a with $f(a)<M$ for some $M \in \mathbb{R}$ prove that there is an open interval I containing a such that $f(x)<M$ for all $x \in I$.

Consider the function $g(x)=M-f(x)$. Then $g(x)$ is continuous and $g(a)=M-f(a)>0$. By the sign preserving property $g(x)>\varepsilon$ for some $\varepsilon>0$ on some open interval containing a. So $M-f(x)=g(x)>0$, and therefore $f(x)<M$ on that interval.

10 If $f: \mathbb{R} \rightarrow \mathbb{R}$ is continuous and $\lim _{x \rightarrow \infty} f(x)=\lim _{x \rightarrow-\infty} f(x)=\infty$, prove that f has a minimum on \mathbb{R}, i.e. there is an $x_{m} \in \mathbb{R}$ such that $f\left(x_{m}\right)=\inf _{x \in \mathbb{R}} f(x)$.
Let a be any real number, and let $M=f(a)$.
Since $\lim _{x \rightarrow \infty} f(x)=\infty$, there exists M_{1} such that $x>M_{1}$ implies $f(x)>M$. Since $f(a)=M$, $a \leq M_{1}$.

Since $\lim _{x \rightarrow-\infty} f(x)=\infty$, there exists M_{2} such that $x<M_{2}$ implies $f(x)>M$. Since $f(a)=M$, $a \geq M_{2}$. So $a \in\left[M_{2}, M_{1}\right]$.

By the extreme value theorem f attains its minimum m on the interval $\left[M_{2}, M_{1}\right]$, i.e. there exists $x_{m} \in\left[M_{2}, M_{1}\right]$ such that $f(x) \geq f\left(x_{m}\right)$ for all $x \in\left[M_{2}, M_{1}\right]$.
For $x \notin\left[M_{2}, M_{1}\right]$ we have $f(x)>M=f(a) \geq f\left(x_{m}\right)$. Thus we have $f(x) \geq f\left(x_{m}\right)$ for all $x \in \mathbb{R}$, so x_{m} is an absolute minimum of f.

Section 3.4

2(c) Prove that any polinomial $f(x)$ is uniformly continuous on $(0,1)$.
Last week (see problem 4 (b) in 3.2) we proved that for any polynomial function $f(x)$ and any real number $a, \lim _{x \rightarrow a} f(x)=f(a)$. By remark 3.20, $f(x)$ is continuous at every point a. In particular, it is continuous on $[0,1]$. By theorem 3.39, it is uniformly continuous on $[0,1]$. Then it is uniformly continuous on $(0,1)$ (since it is a subset of $[0,1]$).
$5(a)$ Let I be a boundend interval. Prove that if $f: I \rightarrow \mathbb{R}$ is uniformly continuous on I, then f is bounded on I.

If I is closed, then f is bounded by theorem 3.26. If I is $(a, b),(a, b]$, or $[a, b)$, then since f is uniformly continuous on I, it is uniformly continuous on (a, b). Then by theorem 3.40 there exists a continuous function g on $[a, b]$ such that $g(x)=f(x)$ on (a, b). Moreover, if I includes a or b then $f=g$ at that point, so $f=g$ on I. By theorem $3.26 g$ is bounded on $[a, b]$. Therefore g is bounded on I, and so f is bounded on I.

35 (b) Prove that (a) may be false if I is unbounded or if f is merely continuous.
Counterexample 1 (if I is unbounded). Let $f(x)=x$ on R. It is uniformly continuous, but not bounded.

Counterexample 2 (if f is merely continuous). Let $f(x)=\frac{1}{x}$ on $(0,1)$. The interval is bounded, but f is not bounded.

