Section 4.1

1(b) For $f(x)=\frac{1}{x}, a \neq 0$, use Definition 4.1 directly to prove that $f^{\prime}(a)$ exists.
$f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{1}{a+h}-\frac{1}{a}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{a-(a+h)}{a(a+h)}\right)}{h}=\lim _{h \rightarrow 0} \frac{-h}{h a(a+h)}=\lim _{h \rightarrow 0} \frac{-1}{a(a+h)}=-\frac{1}{a^{2}}$

3 Let I be an open interval, $f: I \rightarrow \mathbb{R}$, and $c \in I$. The function f is said to have a local maximum at c if and only if there is a $\delta>0$ such that $f(c) \geq f(x)$ holds for all $|x-c|<\delta$. (a) If f has a local maximum at c, prove that $\frac{f(c+h)-f(c)}{h} \leq 0$ and $\frac{f(c+H)-f(c)}{H} \geq 0$ for $h>0$ and $H<0$ sufficiently small.
Since f has a local maximum at $c, f(c) \geq f(c+h)$ for h sufficiently small. Therefore $f(c+h)-f(c) \leq 0$. For $h>0$, we have $\frac{f(c+h)-f(c)}{h} \leq 0$.
Also, we can write $f(c) \geq f(c+H)$ for H sufficiently small. Therefore $f(c+H)-f(c) \leq 0$. For $H<0$, we have $\frac{f(c+H)-f(c)}{H} \geq 0$.
$3(b)$ If f is differentiable and has a local maximum at c, prove that $f^{\prime}(c)=0$.
Since f is differentiable, $f^{\prime}(c)=\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists. Therefore $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ and $\lim _{H \rightarrow 0^{-}} \frac{f(c+H)-f(c)}{H}$ exist and are equal. By the comparison theorem, part (a) implies that $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \leq 0$ and $\lim _{H \rightarrow 0^{-}} \frac{f(c+H)-f(c)}{H} \geq 0$. Since these two limits must be equal, they are both equal to 0 . Thus $f^{\prime}(c)=0$.

3(c) Make and prove analogous statements for local minima.

Definition. Let I be an open interval, $f: I \rightarrow \mathbb{R}$, and $c \in I$. The function f is said to have a local minimum at c if and only if there is a $\delta>0$ such that $f(c) \leq f(x)$ holds for all $|x-c|<\delta$. Statement a. If f has a local minimum at c, then $\frac{f(c+h)-f(c)}{h} \geq 0$ and $\frac{f(c+H)-f(c)}{H} \leq 0$ for $h>0$ and $H<0$ sufficiently small.
Statement b. If f is differentiable and has a local minimum at c, then $f^{\prime}(c)=0$.
Proof of a. Since f has a local minimum at $c, f(c) \leq f(c+h)$ for h sufficiently small. Therefore $f(c+h)-f(c) \geq 0$. For $h>0$, we have $\frac{f(c+h)-f(c)}{h} \geq 0$.
Also, we can write $f(c) \leq f(c+H)$ for H sufficiently small. Therefore $f(c+H)-f(c) \geq 0$. For $H<0$, we have $\frac{f(c+H)-f(c)}{H} \leq 0$.
Proof of b. Since f is differentiable, $\lim _{h \rightarrow 0} \frac{f(c+h)-f(c)}{h}$ exists. Therefore $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h}$ and $\lim _{H \rightarrow 0^{-}} \frac{f(c+H)-f(c)}{H}$ exist and are equal. By the comparison theorem, part (a) implies that $\lim _{h \rightarrow 0^{+}} \frac{f(c+h)-f(c)}{h} \geq 0$ and $\lim _{H \rightarrow 0^{-}} \frac{f(c+H)-f(c)}{H} \leq 0$. Since these two limits must be equal, they are both equal to 0 . Thus $f^{\prime}(c)=0$.

3(d) Show by example that the converses of the statements in parts (b) and (c) are false. Namely, find an f such that $f^{\prime}(0)=0$ but f has neither a local maximum nor a local minimum at 0 .

Let $f(x)=x^{3}$. Then $f^{\prime}(x)=3 x^{2}$, so $f^{\prime}(0)=0$. However, $f(x)$ is positive for positive x, and $f(x)$ is negative for negative x, so $f(x)$ has neither a local maximum nor a local minimum at 0 .

Section 4.2

1(d) Let $f(x)=\left|x^{3}+2 x^{2}-x-2\right|$. Find all x for which $f^{\prime}(x)$ exists and find a formula for f^{\prime}.

Let $p(x)=x^{3}+2 x^{2}-x-2$, then $f(x)=|p(x)|=\left\{\begin{array}{ll}p(x) & \text { if } p(x) \geq 0 \\ -p(x) & \text { if } p(x)<0\end{array}\right.$.
So we need to find the intevals where $p(x)$ is positive and intervals where it is negative.
$p(x)=\left(x^{3}+2 x^{2}\right)-(x+2)=x^{2}(x+2)-(x+2)=\left(x^{2}-1\right)(x+2)=(x-1)(x+1)(x+2)$, so $p(x)=0$ at $-2,-1$, and 1. Then it is easy to check that it is positive on $(-2,-1)$ and $(1,+\infty)$, and negative on $(-\infty,-2)$ and $(-1,1)$.

Since $p^{\prime}(x)=3 x^{2}+4 x-1$ and $-p^{\prime}(x)=-3 x^{2}-4 x+1$, we have
$f^{\prime}(x)=\left\{\begin{array}{ll}p^{\prime}(x) & \text { if } p(x)>0 \\ -p^{\prime}(x) & \text { if } p(x)<0\end{array}= \begin{cases}3 x^{2}+4 x-1 & \text { if } x \in(-2,-1) \cup(1,+\infty) \\ -3 x^{2}-4 x+1 & \text { if } x \in(-\infty,-2) \cup(-1,1)\end{cases}\right.$
Note: since $p^{\prime}(x) \neq-p^{\prime}(x)$ at $-2,-1$, and 1 , we conclude that $f^{\prime}(x)$ does not exist at these points. (Sketch graphs of $p(x)$ and $f(x)$!)

5 Suppose that f is differentiable at a and $f(a) \neq 0$.
(a) Show that for h sufficiently small, $f(a+h) \neq 0$.

Since $f(x)$ is differentiable at a, it is continuous at a.
If $f(a)>0$, by the sign-preserving property $f(x)>0$ for x sufficiently close to a, i.e. $f(a+h)>$ 0 for h sufficiently small.

If $f(a)<0$, consider $g(x)=-f(x)$. Then $g(x)$ is continuous at a and $g(a)>0$. So by the sign-preserving property, $g(a+h)>0$ for h sufficiently small. Therefore $f(a+h)<0$ for h sufficiently small.

5(b) Using Definition 4.1 directly, prove that $\frac{1}{f(x)}$ is differentiable at $x=a$ and $\left(\frac{1}{f}\right)^{\prime}(a)=-\frac{f^{\prime}(a)}{f^{2}(a)}$.
$\left(\frac{1}{f}\right)^{\prime}(a)=\lim _{h \rightarrow 0} \frac{\frac{1}{f(a+h)}-\frac{1}{f(a)}}{h}=\lim _{h \rightarrow 0} \frac{\left(\frac{f(a)-f(a+h)}{f(a) f(a+h)}\right)}{h}=\lim _{h \rightarrow 0} \frac{f(a)-f(a+h)}{h f(a) f(a+h)}$
$=-\lim _{h \rightarrow 0}\left(\frac{f(a+h)-f(a)}{h} \cdot \frac{1}{f(a) f(a+h)}\right)=-f^{\prime}(a) \cdot \frac{1}{f^{2}(a)}=-\frac{f^{\prime}(a)}{f^{2}(a)}$

6 Use Exercise 5 and the Product Rule to prove the Quotient Rule.

$$
\begin{aligned}
& \left(\frac{f}{g}\right)^{\prime}(a)=\left(f \cdot \frac{1}{g}\right)^{\prime}(a)=f^{\prime}(a) \cdot \frac{1}{g(a)}+f(a)\left(\frac{1}{g}\right)^{\prime}(a)=f^{\prime}(a) \cdot \frac{1}{g(a)}-\frac{f(a) g^{\prime}(a)}{g^{2}(a)} \\
& =\frac{f^{\prime}(a) g(a)-f(a) g^{\prime}(a)}{g^{2}(a)}
\end{aligned}
$$

