Section 4.3

1(b) Evaluate the limit if it exists: $\lim _{x \rightarrow 0^{+}} \frac{\cos x-e^{x}}{\log \left(1+x^{2}\right)}$.
Since $\lim _{x \rightarrow 0^{+}} \cos x-e^{x}=\lim _{x \rightarrow 0^{+}} \log \left(1+x^{2}\right)=0$, we can use L'Hospital's Rule:
$\lim _{x \rightarrow 0^{+}} \frac{\cos x-e^{x}}{\log \left(1+x^{2}\right)}=\lim _{x \rightarrow 0^{+}} \frac{\left(\cos x-e^{x}\right)^{\prime}}{\left(\log \left(1+x^{2}\right)\right)^{\prime}}=\lim _{x \rightarrow 0^{+}} \frac{-\sin x-e^{x}}{\left(\frac{2 x}{1+x^{2}}\right)}=\lim _{x \rightarrow 0^{+}} \frac{-\left(\sin x+e^{x}\right)\left(1+x^{2}\right)}{2 x}=$
$-\infty$
4(a) Using $\left(e^{x}\right)^{\prime}=e^{x},(\log x)^{\prime}=\frac{1}{x}$, and $x^{\alpha}=e^{\alpha \log x}$, show that $\left(x^{\alpha}\right)^{\prime}=\alpha x^{\alpha-1}$ for all $x>0$.
$\left(x^{\alpha}\right)^{\prime}=\left(\left(e^{\log x}\right)^{\alpha}\right)^{\prime}=\left(e^{\alpha \log x}\right)^{\prime}=e^{\alpha \log x} \cdot \frac{\alpha}{x}=x^{\alpha} \cdot \frac{\alpha}{x}=\alpha x^{\alpha-1}$

6 Let f be differentiable on a nonempty, open interval (a, b) with f^{\prime} bounded on (a, b). Prove that f is uniformly continuous on (a, b).
Let $\left|f^{\prime}\right| \leq M$ for some $M>0$. Let $\varepsilon>0$ be given. Set $\delta=\frac{\varepsilon}{M}$. Then by the Mean Value Theorem for any $x_{1}<x_{2}$ in (a, b) such that $\left|x_{2}-x_{1}\right|<\delta$ there exists $c \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}(c)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}$. Therefore $\left|f\left(x_{2}\right)-f\left(x_{1}\right)\right|=\left|f^{\prime}(c)\right| \cdot\left|x_{2}-x_{1}\right|<M \cdot \delta=M \cdot \frac{\varepsilon}{M}=\varepsilon$.

8 Let f be twice differentiable on (a, b) and let there be points $x_{1}<x_{2}<x_{3}$ in (a, b) such that $f\left(x_{1}\right)>f\left(x_{2}\right)$ and $f\left(x_{3}\right)>f\left(x_{2}\right)$. Prove that there is a point $c \in(a, b)$ such that $f^{\prime \prime}(c)>0$.

Since $x_{1}<x_{2}$ and $f\left(x_{1}\right)>f\left(x_{2}\right)$, by the Mean Value Theorem there exists a point $a \in\left(x_{1}, x_{2}\right)$ such that $f^{\prime}(a)=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}<0$.
Since $x_{2}<x_{3}$ and $f\left(x_{3}\right)>f\left(x_{2}\right)$, by the Mean Value Theorem there exists a point $b \in\left(x_{2}, x_{3}\right)$ such that $f^{\prime}(b)=\frac{f\left(x_{3}\right)-f\left(x_{2}\right)}{x_{3}-x_{2}}>0$.
Then by the Mean Value Theorem (applied to $\left.f^{\prime}(x)\right)$ there exists a point $c \in(a, b)$ such that $f^{\prime \prime}(c)=\frac{f^{\prime}(b)-f^{\prime}(a)}{b-a}>0$.

Section 4.4

1(b) Find all $a \in \mathbb{R}$ such that $a x^{2}+3 x+5$ is strictly increasing on the interval $(1,2)$.
Let $f(x)=a x^{2}+3 x+5$. Then $f^{\prime}(x)=2 a x+3$ is continuous. If $f^{\prime}(x)$ is negative at some number, it is negative on some open interval, and then by the increasing/decreasing test, $f(x)$ is decreasing on that interval. Therefore if $f(x)=a x^{2}+3 x+5$ is strictly increasing then $f^{\prime}(x) \geq 0$ on $(1,2)$. So $2 a x+3 \geq 0$ on $(1,2)$. Since $f^{\prime}(x)=2 a x+3$ is continuous, $f^{\prime}(2) \geq 0$. So we have $4 a+3 \geq 0$, so $a \geq-\frac{3}{4}$.
Conversely, if $a \geq-\frac{3}{4}$, then $2 a x+3>0$ on $(1,2)$, and then $f(x)$ is strictly increasing on $(1,2)$.

Another solution (not using calculus): if $a=0$, then $f(x)=3 x+5$ is strictly increasing everywhere.

If $a \neq 0$, then the graph of this function is a parabola. If $a>0$ then the parabola opens upward, and if $a<0$ then the parabola opens downward. Recall that the vertex of the parabola $y=a x^{2}+b x+c$ has x-coordinate $-\frac{b}{2 a}$, so for our function it is $-\frac{3}{2 a}$. Now, $f(x)=a x^{2}+3 x+5$ is strictly increasing on $(1,2)$ if either $a>0$ and $-\frac{3}{2 a} \leq 1$ (i.e. the vertex of the parabola is to the left of the interval), or $a<0$ and $-\frac{3}{2 a} \geq 2$ (i.e. the vertex of the parabola is to the right of the interval). Solving these inequalities, and adding the solution $a=0$, gives $\left[-\frac{3}{4},+\infty\right)$.

2 Let f and g be 1-1 and continuous on \mathbb{R}. If $f(0)=2, g(1)=2, f^{\prime}(0)=\pi$, and $g^{\prime}(1)=e$, compute the following derivatives.
(a) $\left(f^{-1}\right)^{\prime}(2)$.
$\left(f^{-1}\right)^{\prime}(2)=\frac{1}{f^{\prime}\left(f^{-1}(2)\right)}=\frac{1}{f^{\prime}(0)}=\frac{1}{\pi}$.
(b) $\left(g^{-1}\right)^{\prime}(2)$.
$\left(g^{-1}\right)^{\prime}(2)=\frac{1}{g^{\prime}\left(g^{-1}(2)\right)}=\frac{1}{g^{\prime}(1)}=\frac{1}{e}$.
(c) $\left(f^{-1} \cdot g^{-1}\right)^{\prime}(2)$.
$\left(f^{-1} \cdot g^{-1}\right)^{\prime}(2)=f^{-1}(2)\left(g^{-1}\right)^{\prime}(2)+\left(f^{-1}\right)^{\prime}(2) g^{-1}(2)=0 \cdot \frac{1}{e}+\frac{1}{\pi} \cdot 1=\frac{1}{\pi}$.

4 Using the Inverse Function Theorem, prove that $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$ for $x \in(-1,1)$ and $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$ for $x \in(-\infty, \infty)$.
Since $\arcsin x=\sin ^{-1} x, \arcsin ^{-1} x=\sin x$, so by the Inverse Function Theorem
$(\arcsin x)^{\prime}=\frac{1}{\sin ^{\prime}(\arcsin x)}=\frac{1}{\cos (\arcsin x)}$.
Let $y=\arcsin x$, then $\sin y=x, \sin ^{2} y=x^{2}, \cos ^{2} y=1-\sin ^{2} y=1-x^{2}$, so $\cos y= \pm \sqrt{1-x^{2}}$.
Since $-\frac{\pi}{2} \leq \arcsin x=y \leq \frac{\pi}{2}, \cos y \geq 0$, so $\cos y=\sqrt{1-x^{2}}$.
Thus $\cos (\arcsin x)=\cos y=\sqrt{1-x^{2}}$, and $(\arcsin x)^{\prime}=\frac{1}{\sqrt{1-x^{2}}}$.
Similarly for $\arctan x:(\arctan x)^{\prime}=\frac{1}{\tan ^{\prime}(\arctan x)}=\frac{1}{\sec ^{2}(\arctan x)}$.
Let $y=\arctan x$, then $\tan y=x, \sec ^{2} y=1+\tan ^{2} y=1+x^{2}$. Then $(\arctan x)^{\prime}=\frac{1}{1+x^{2}}$.

