Math 171

Section 4.3

1(b) Evaluate the limit if it exists: $\lim_{x\to 0^+} \frac{\cos x - e^x}{\log(1+x^2)}$.

Since $\lim_{x\to 0^+} \cos x - e^x = \lim_{x\to 0^+} \log(1+x^2) = 0$, we can use L'Hospital's Rule:

$$\lim_{x \to 0^+} \frac{\cos x - e^x}{\log(1 + x^2)} = \lim_{x \to 0^+} \frac{(\cos x - e^x)'}{(\log(1 + x^2))'} = \lim_{x \to 0^+} \frac{-\sin x - e^x}{\left(\frac{2x}{1 + x^2}\right)} = \lim_{x \to 0^+} \frac{-(\sin x + e^x)(1 + x^2)}{2x} = -\infty$$

4(a) Using $(e^x)' = e^x$, $(\log x)' = \frac{1}{x}$, and $x^{\alpha} = e^{\alpha \log x}$, show that $(x^{\alpha})' = \alpha x^{\alpha-1}$ for all x > 0.

$$(x^{\alpha})' = \left(\left(e^{\log x}\right)^{\alpha}\right)' = \left(e^{\alpha\log x}\right)' = e^{\alpha\log x} \cdot \frac{\alpha}{x} = x^{\alpha} \cdot \frac{\alpha}{x} = \alpha x^{\alpha-1}$$

6 Let f be differentiable on a nonempty, open interval (a, b) with f' bounded on (a, b). Prove that f is uniformly continuous on (a, b).

Let $|f'| \leq M$ for some M > 0. Let $\varepsilon > 0$ be given. Set $\delta = \frac{\varepsilon}{M}$. Then by the Mean Value Theorem for any $x_1 < x_2$ in (a, b) such that $|x_2 - x_1| < \delta$ there exists $c \in (x_1, x_2)$ such that $f'(c) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$. Therefore $|f(x_2) - f(x_1)| = |f'(c)| \cdot |x_2 - x_1| < M \cdot \delta = M \cdot \frac{\varepsilon}{M} = \varepsilon$.

8 Let f be twice differentiable on (a, b) and let there be points $x_1 < x_2 < x_3$ in (a, b) such that $f(x_1) > f(x_2)$ and $f(x_3) > f(x_2)$. Prove that there is a point $c \in (a, b)$ such that f''(c) > 0.

Since $x_1 < x_2$ and $f(x_1) > f(x_2)$, by the Mean Value Theorem there exists a point $a \in (x_1, x_2)$ such that $f'(a) = \frac{f(x_2) - f(x_1)}{x_2 - x_1} < 0.$

Since $x_2 < x_3$ and $f(x_3) > f(x_2)$, by the Mean Value Theorem there exists a point $b \in (x_2, x_3)$ such that $f'(b) = \frac{f(x_3) - f(x_2)}{x_3 - x_2} > 0.$

Then by the Mean Value Theorem (applied to f'(x)) there exists a point $c \in (a, b)$ such that $f''(c) = \frac{f'(b) - f'(a)}{b - a} > 0.$

Section 4.4

1(b) Find all $a \in \mathbb{R}$ such that $ax^2 + 3x + 5$ is strictly increasing on the interval (1, 2).

Let $f(x) = ax^2 + 3x + 5$. Then f'(x) = 2ax + 3 is continuous. If f'(x) is negative at some number, it is negative on some open interval, and then by the increasing/decreasing test, f(x) is decreasing on that interval. Therefore if $f(x) = ax^2 + 3x + 5$ is strictly increasing then $f'(x) \ge 0$ on (1, 2). So $2ax + 3 \ge 0$ on (1, 2). Since f'(x) = 2ax + 3 is continuous, $f'(2) \ge 0$. So we have $4a + 3 \ge 0$, so $a \ge -\frac{3}{4}$.

Conversely, if $a \ge -\frac{3}{4}$, then 2ax + 3 > 0 on (1,2), and then f(x) is strictly increasing on (1,2).

Another solution (not using calculus): if a = 0, then f(x) = 3x + 5 is strictly increasing everywhere.

If $a \neq 0$, then the graph of this function is a parabola. If a > 0 then the parabola opens upward, and if a < 0 then the parabola opens downward. Recall that the vertex of the parabola $y = ax^2 + bx + c$ has x-coordinate $-\frac{b}{2a}$, so for our function it is $-\frac{3}{2a}$. Now, $f(x) = ax^2 + 3x + 5$ is strictly increasing on (1, 2) if either a > 0 and $-\frac{3}{2a} \leq 1$ (i.e. the vertex of the parabola is to the left of the interval), or a < 0 and $-\frac{3}{2a} \geq 2$ (i.e. the vertex of the parabola is to the right of the interval). Solving these inequalities, and adding the solution a = 0, gives $\left[-\frac{3}{4}, +\infty\right)$.

2 Let f and g be 1-1 and continuous on \mathbb{R} . If f(0) = 2, g(1) = 2, $f'(0) = \pi$, and g'(1) = e, compute the following derivatives. (a) $(f^{-1})'(2)$.

$$(f^{-1})'(2) = \frac{1}{f'(f^{-1}(2))} = \frac{1}{f'(0)} = \frac{1}{\pi}.$$

(b) $(g^{-1})'(2).$
 $(g^{-1})'(2) = \frac{1}{g'(g^{-1}(2))} = \frac{1}{g'(1)} = \frac{1}{e}.$
(c) $(f^{-1} \cdot g^{-1})'(2).$
 $(f^{-1} \cdot g^{-1})'(2) = f^{-1}(2)(g^{-1})'(2) + (f^{-1})'(2)g^{-1}(2) = 0 \cdot \frac{1}{e} + \frac{1}{\pi} \cdot 1 = \frac{1}{\pi}.$

4 Using the Inverse Function Theorem, prove that $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$ for $x \in (-1,1)$ and $(\arctan x)' = \frac{1}{1+x^2}$ for $x \in (-\infty,\infty)$. Since $\arcsin x = \sin^{-1} x$, $\arcsin^{-1} x = \sin x$, so by the Inverse Function Theorem $(\arcsin x)' = \frac{1}{\sin'(\arcsin x)} = \frac{1}{\cos(\arcsin x)}$. Let $y = \arcsin x$, then $\sin y = x$, $\sin^2 y = x^2$, $\cos^2 y = 1 - \sin^2 y = 1 - x^2$, so $\cos y = \pm \sqrt{1-x^2}$. Since $-\frac{\pi}{2} \le \arcsin x = y \le \frac{\pi}{2}$, $\cos y \ge 0$, so $\cos y = \sqrt{1-x^2}$. Thus $\cos(\arcsin x) = \cos y = \sqrt{1-x^2}$, and $(\arcsin x)' = \frac{1}{\sqrt{1-x^2}}$. Similarly for $\arctan x$: $(\arctan x)' = \frac{1}{\tan'(\arctan x)} = \frac{1}{\sec^2(\arctan x)}$. Let $y = \arctan x$, then $\tan y = x$, $\sec^2 y = 1 + \tan^2 y = 1 + x^2$. Then $(\arctan x)' = \frac{1}{1+x^2}$.