MATH 171

Test 1 - Solutions

February 28, 2005

1. Give the definition of a Cauchy sequence. A sequence $\left\{x_{n}\right\}$ is called Cauchy if for any $\epsilon>0$ there exists $N \in \mathbb{N}$ such that for any $n, m \geq N,\left|x_{n}-x_{m}\right|<\epsilon$.
2. State the Well-ordering Principle. Every nonempty subset of \mathbb{N} has a least element.
3. State and prove the Approximation Property for Suprema.

Let E be a subset of \mathbb{R} that has a supremum. Then for any $\epsilon>0$ there exists $a \in E$ such that $\sup E-\epsilon<a \leq \sup E$.
Proof. Suppose that the statement is false, i.e. there exists an $\epsilon>0$ such that no point $a \in E$ satisfies sup $E-\epsilon<a \leq \sup E$. Then for all $a \in E$, $a \leq \sup E-\epsilon$. Then sup $E-\epsilon$ is an upper bound of E. Since any upper bound of E is greater than or equal to sup E, sup $E-\epsilon \geq$ sup E, so $0 \geq \epsilon$. This contradicts to the statement that $\epsilon>0$.
4. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=(x+1)^{2}-3$ and let $E=(-3,0]$. Find $f(E)$ and $f^{-1}(E)$. (Explain how you find these!)
Sketch the graph of $f(x)$. Actually, it is convenient to have two separate graphs, and show E on the x-axis in order to find $f(E)$, and show E on the y-axis in order to find $f^{-1}(E)$:

From the above graphs, we see that
$f(E)=\{y \in \mathbb{R} \mid y=f(x)$ for some $x \in E\}=[-3,1)$, and
$f^{-1}(E)=\{x \in \mathbb{R} \mid f(x)=y$ for some $y \in E\}=\left[r_{1},-1\right) \cup\left(-1, r_{2}\right]$ where r and s are the roots of the equation $(x+1)^{2}-3=0$. Solving this equation gives: $(x+1)^{2}=3, x+1= \pm \sqrt{3}$, so $r=-\sqrt{3}-1$ and $s=\sqrt{3}-1$. Therefore we have $f^{-1}(E)=[-\sqrt{3}-1,-1) \cup(-1, \sqrt{3}-1]$.
5. Prove that for all $n \in \mathbb{N}, 1+2+3+\ldots+(n-2)+(n-1)+n+(n-1)+(n-2)+\ldots+3+2+1=n^{2}$.

Proof by induction. Basis step: if $n=1$, the formula becomes $1=1^{2}$ which is true.
Inductive step. Assume the formula holds for $n=k$, i.e.

$$
1+2+3+\ldots+(k-2)+(k-1)+k+(k-1)+(k-2)+\ldots+3+2+1=k^{2}
$$

We want to show that the formula holds for $n=k+1$, i.e.

$$
1+2+3+\ldots+(k-1)+k+(k+1)+k+(k-1)+\ldots+3+2+1=(k+1)^{2} .
$$

Adding $(k+1)+k$ to both sides of

$$
1+2+3+\ldots+(k-2)+(k-1)+k+(k-1)+(k-2)+\ldots+3+2+1=k^{2}
$$

we have:
$1+2+3+\ldots+(k-2)+(k-1)+k+(k+1)+k+(k-1)+(k-2)+\ldots+3+2+1=$ $k^{2}+(k+1)+k=k^{2}+2 k+1=(k+1)^{2}$.
6. (For extra credit, 10 points) Prove or disprove each of the following statements:
(a) If $\lim _{x \rightarrow a} f(x)=L$ then $\lim _{x \rightarrow a}|f(x)|=|L|$.

This statement is true.
If $L=0$, then for any $\epsilon>0$ there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-0|<\epsilon$, which implies $||f(x)|-0|<\epsilon$, so $\lim _{x \rightarrow a}|f(x)|=0$.
Now consider $L \neq 0$. Given $\epsilon>0$, let $\epsilon_{1}=\min \left(\epsilon, \frac{|L|}{2}\right)$. Since $\lim _{x \rightarrow a} f(x)=L$, there exists $\delta>0$ such that $0<|x-a|<\delta$ implies $|f(x)-L|<\epsilon_{1}$, i.e. $L-\epsilon_{1}<f(x)<L+\epsilon_{1}$. Since $\epsilon_{1} \leq \frac{|L|}{2}$, the numbers $L-\epsilon_{1}, L$, and $L+\epsilon_{1}$ are either all positive or all negative.
Case I. The numbers $L-\epsilon_{1}$, L, and $L+\epsilon_{1}$ are all positive. Then $f(x)$ is also positive for $0<|x-a|<\delta$, and we have $|L|-\epsilon_{1}<|f(x)|<|L|+\epsilon_{1}$. Since $\epsilon_{1} \leq \epsilon$, we have $|L|-\epsilon<|f(x)|<|L|+\epsilon$. Therefore $\lim _{x \rightarrow a}|f(x)|=|L|$.
Case II. The numbers $L-\epsilon_{1}, L$, and $L+\epsilon_{1}$ are all negative. Then $f(x)$ is also negative for $0<|x-a|<\delta$, and we have $-|L|-\epsilon_{1}<-|f(x)|<-|L|+\epsilon_{1}$ which implies $|L|-\epsilon_{1}<|f(x)|<|L|+\epsilon_{1}$. Again, since $\epsilon_{1} \leq \epsilon$, we have $|L|-\epsilon<|f(x)|<|L|+\epsilon$. Therefore $\lim _{x \rightarrow a}|f(x)|=|L|$.
(b) If $\lim _{x \rightarrow a}|f(x)|=|L|$ then $\lim _{x \rightarrow a} f(x)=L$ or $\lim _{x \rightarrow a} f(x)=-L$.

This statement is false. Counterexample: let $f(x)= \begin{cases}1, & \text { if } x \text { is rational } \\ -1, & \text { if } x \text { is irrational }\end{cases}$
Then $\lim _{x \rightarrow 0}|f(x)|=\lim _{x \rightarrow 0} 1=1$, but $\lim _{x \rightarrow 0} f(x)$ does not exist.

