MATH 171 Test 1 - Solutions February 28, 2005

- 1. Give the definition of a Cauchy sequence. A sequence $\{x_n\}$ is called Cauchy if for any $\epsilon > 0$ there exists $N \in \mathbb{N}$ such that for any $n, m \ge N$, $|x_n x_m| < \epsilon$.
- 2. State the Well-ordering Principle. Every nonempty subset of \mathbb{N} has a least element.
- 3. State and prove the Approximation Property for Suprema.

Let E be a subset of \mathbb{R} that has a supremum. Then for any $\epsilon > 0$ there exists $a \in E$ such that $\sup E - \epsilon < a \leq \sup E$.

Proof. Suppose that the statement is false, i.e. there exists an $\epsilon > 0$ such that no point $a \in E$ satisfies $\sup E - \epsilon < a \leq \sup E$. Then for all $a \in E$, $a \leq \sup E - \epsilon$. Then $\sup E - \epsilon$ is an upper bound of E. Since any upper bound of E is greater than or equal to $\sup E$, $\sup E - \epsilon \geq \sup E$, so $0 \geq \epsilon$. This contradicts to the statement that $\epsilon > 0$.

4. Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = (x+1)^2 - 3$ and let E = (-3, 0]. Find f(E) and $f^{-1}(E)$. (Explain how you find these!)

Sketch the graph of f(x). Actually, it is convenient to have two separate graphs, and show E on the x-axis in order to find f(E), and show E on the y-axis in order to find $f^{-1}(E)$:

From the above graphs, we see that

 $f(E) = \{y \in \mathbb{R} | y = f(x) \text{ for some } x \in E\} = [-3, 1), \text{ and}$ $f^{-1}(E) = \{x \in \mathbb{R} | f(x) = y \text{ for some } y \in E\} = [r_1, -1) \cup (-1, r_2] \text{ where } r \text{ and } s \text{ are the roots}$ of the equation $(x + 1)^2 - 3 = 0$. Solving this equation gives: $(x + 1)^2 = 3, x + 1 = \pm\sqrt{3}, so$ $r = -\sqrt{3} - 1$ and $s = \sqrt{3} - 1$. Therefore we have $f^{-1}(E) = [-\sqrt{3} - 1, -1) \cup (-1, \sqrt{3} - 1].$

Prove that for all n ∈ N, 1+2+3+...+(n-2)+(n-1)+n+(n-1)+(n-2)+...+3+2+1 = n².
 Proof by induction. Basis step: if n = 1, the formula becomes 1 = 1² which is true.
 Inductive step. Assume the formula holds for n = k, i.e.

$$1 + 2 + 3 + \ldots + (k - 2) + (k - 1) + k + (k - 1) + (k - 2) + \ldots + 3 + 2 + 1 = k^{2}.$$

We want to show that the formula holds for n = k + 1, i.e.

$$1 + 2 + 3 + \ldots + (k - 1) + k + (k + 1) + k + (k - 1) + \ldots + 3 + 2 + 1 = (k + 1)^{2}.$$

Adding (k+1) + k to both sides of

$$1 + 2 + 3 + \ldots + (k - 2) + (k - 1) + k + (k - 1) + (k - 2) + \ldots + 3 + 2 + 1 = k^{2},$$

we have:

 $1 + 2 + 3 + \ldots + (k - 2) + (k - 1) + k + (k + 1) + k + (k - 1) + (k - 2) + \ldots + 3 + 2 + 1 = k^2 + (k + 1) + k = k^2 + 2k + 1 = (k + 1)^2.$

- 6. (For extra credit, 10 points) Prove or disprove each of the following statements:
 - (a) If lim f(x) = L then lim t f(x) = |L|. This statement is true. If L = 0, then for any ε > 0 there exists δ > 0 such that 0 < |x - a| < δ implies |f(x) - 0| < ε, which implies ||f(x)| - 0| < ε, so lim t f(x)| = 0. Now consider L ≠ 0. Given ε > 0, let ε₁ = min (ε, |L|/2). Since lim t f(x) = L, there exists δ > 0 such that 0 < |x - a| < δ implies |f(x) - L| < ε₁, i.e. L - ε₁ < f(x) < L + ε₁. Since ε₁ ≤ |L|/2, the numbers L - ε₁, L, and L + ε₁ are either all positive or all negative. Case I. The numbers L - ε₁, L, and L + ε₁ are all positive. Then f(x) is also positive for 0 < |x - a| < δ, and we have |L| - ε₁ < |f(x)| < |L| + ε₁. Since ε₁ ≤ ε, we have |L| - ε < |f(x)| < |L| + ε. Therefore lim t f(x)| = |L|. Case II. The numbers L - ε₁, L, and L + ε₁ are all negative. Then f(x) is also negative for 0 < |x - a| < δ, and we have -|L| - ε₁ < |f(x)| < -|L| + ε₁ which implies |L| - ε₁ < |f(x)| < |L| + ε₁. Again, since ε₁ ≤ ε, we have |L| - ε < |f(x)| < |L| + ε₁. Therefore lim t f(x)| = |L|.
 (b) If lim |f(x)| = |L| then lim f(x) = L or lim f(x) = -L.
 - (b) If $\lim_{x \to a} |f(x)| = |L|$ then $\lim_{x \to a} f(x) = L$ or $\lim_{x \to a} f(x) = -L$. This statement is false. Counterexample: let $f(x) = \begin{cases} 1, & \text{if } x \text{ is rational} \\ -1, & \text{if } x \text{ is irrational} \end{cases}$ Then $\lim_{x \to 0} |f(x)| = \lim_{x \to 0} 1 = 1$, but $\lim_{x \to 0} f(x)$ does not exist.