1. Give the definition of \(\lim_{x \to -\infty} f(x) = L \).

 Let \(f \) be defined on some interval \((c, +\infty)\). We say that \(\lim_{x \to -\infty} f(x) = L \) if for any \(\varepsilon > 0 \) there exists an \(M \in \mathbb{R} \) such that \(x > M \) implies \(|f(x) - L| < \varepsilon \).

2. State Rolle's theorem.

 Let \(a < b \). If \(f(x) \) is continuous on \([a, b]\) and differentiable on \((a, b)\), and \(f(a) = f(b) \), then there exists a point \(c \in (a, b) \) such that \(f'(c) = 0 \).

3. State and prove the sign-preserving property.

 Let \(I \) be an open (nondegenerate) interval. If \(f(x) \) is continuous at a point \(a \in I \) and \(f(a) > 0 \), then there exist positive numbers \(\varepsilon \) and \(\delta \) such that for \(x \in I \), \(|x - a| < \delta \) implies \(f(x) > \varepsilon \).

 Proof. Let \(\varepsilon = \frac{f(a)}{2} \). Since \(f(x) \) is continuous at \(a \), there exists \(\delta > 0 \) such that \(|x - a| < \delta \) implies \(|f(x) - f(a)| < \varepsilon \). Then \(|f(x) - f(a)| < \frac{f(a)}{2} \), so \(f(x) > f(a) < \frac{f(a)}{2} \).

 Adding \(f(a) \) gives \(\frac{f(a)}{2} < f(x) < \frac{3f(a)}{2} \), so we have \(f(x) > \frac{f(a)}{2} = \varepsilon \).

4. Find all \(a \in \mathbb{R} \) such that \(f(x) = \frac{ax + 2}{x + 1} \) is strictly increasing on \((1, 2)\).

 \[
 f'(x) = \frac{a(x + 1) - (ax + 2)}{(x + 1)^2} = \frac{a - 2}{(x + 1)^2}.
 \]

 If \(f(x) \) is strictly increasing then \(f'(x) \geq 0 \), so we have \(a - 2 > 0 \), or \(a \geq 2 \).

 If \(a > 2 \) then we have \(f'(x) > 0 \), so \(f(x) \) is strictly increasing in its domain (which contains the interval \((1, 2)\)).

 If \(a = 2 \), \(f(x) = \frac{2x + 2}{x + 1} = 2 \) is not strictly increasing.

 Answer: \(a > 2 \).

5. Let \(f(x) \) and \(g(x) \) be uniformly continuous on \(\mathbb{R} \). Prove that \((f + g)(x) \) is uniformly continuous on \(\mathbb{R} \).

 Let \(\varepsilon > 0 \).

 Since \(f(x) \) is uniformly continuous on \(\mathbb{R} \), there exists \(\delta_1 > 0 \) such that for any \(x_1, x_2 \in \mathbb{R} \), \(|x_1 - x_2| < \delta_1 \) implies \(|f(x_1) - f(x_2)| < \frac{\varepsilon}{2} \).

 Since \(g(x) \) is uniformly continuous on \(\mathbb{R} \), there exists \(\delta_2 > 0 \) such that for any \(x_1, x_2 \in \mathbb{R} \), \(|x_1 - x_2| < \delta_2 \) implies \(|g(x_1) - g(x_2)| < \frac{\varepsilon}{2} \).

 Let \(\delta = \min(\delta_1, \delta_2) \). Then for any \(x_1, x_2 \in \mathbb{R} \) such that \(|x_1 - x_2| < \delta \) we have

 \[
 |(f + g)(x_1) - (f + g)(x_2)| = |f(x_1) + g(x_1) - f(x_2) - g(x_2)| = |f(x_1) - f(x_2) + g(x_1) - g(x_2)|
 \]

 \[
 \leq |f(x_1) - f(x_2)| + |g(x_1) - g(x_2)| < \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon.
 \]

 Thus \((f + g)(x) \) is uniformly continuous on \(\mathbb{R} \).

6. Prove or disprove each of the following statements:

 (a) If a function is continuously differentiable on \(\mathbb{R} \) then it is twice differentiable on \(\mathbb{R} \).

 The statement is false. Let \(f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^2 & \text{if } x \geq 0 \end{cases} \). Then \(f'(x) = \begin{cases} 0 & \text{if } x < 0 \\ 2x & \text{if } x \geq 0 \end{cases} \) is continuous but not differentiable.

 (b) If a function is continuously differentiable 100 times on \(\mathbb{R} \) then it is differentiable 101 times on \(\mathbb{R} \).

 The statement is false. Let \(f(x) = \begin{cases} 0 & \text{if } x < 0 \\ x^{101} & \text{if } x \geq 0 \end{cases} \). Then \(f^{(100)}(x) = \begin{cases} 0 & \text{if } x < 0 \\ 101!x & \text{if } x \geq 0 \end{cases} \) is continuous but not differentiable.