Practice test 1 - Answers

1. No
2. $(x-4)^{2}+(y+3)^{2}+(z-2)^{2}=9$. The sphere and the $y z$-plane do not intersect.
3. (a) $\langle-2,2,4\rangle$
(b) 0
(c) $\langle 2,-10,6\rangle$
(d) $\frac{\pi}{2}$
4. $\sqrt{3}$
5. (a) $x-1=y-4=\frac{z+2}{5}$
(b) $\frac{x-1}{2}=\frac{y-4}{5}=\frac{z+2}{3}$
(c) same as in (b)
6. (a) $23 x-8 y-3 z+3=0$
(b) $2 x+5 y+3 z-16=0$
(c) same as in (b)
(d) $2 x-y-z=0$
7. (a) Lines do not intersect.
(b) Point $(-5,-4,-6)$.
(c) Point $(-3,-2,-4)$.
(d) Line $\frac{3 x+1}{-22}=\frac{3 y+2}{7}=z$.
(e) Ellipse (in the $x z$-plane) given by $x^{2}+\frac{z^{2}}{4}=1, y=0$.
8. Position the coordinate system so that the shell is along the z-axis and its center is at the origin. Then the shell is described by:
$36 \leq x^{2}+y^{2} \leq 49,-10 \leq z \leq 10$ in rectangular coordinates, or $6 \leq r \leq 7,-10 \leq z \leq 10$ in cylindrical coordinates.
9. (a) Plane
(b) Circlular cylinder
(c) Sphere
(d) Half-plane
(e) Half-cone
10. Let $r(t)=<\cos t, t^{2}, t^{4}>$.
(a) $<-\sin t, 2 t, 4 t^{3}>$
(b) $<-2, \frac{\pi^{3}}{3}, \frac{\pi^{5}}{5}>$
(c) No
(d) $\int_{0}^{1} \sqrt{\sin ^{2} t+4 t^{2}+16 t^{6}} d t$
11. $v(\pi)=<0,3,-2>, a(\pi)=\langle 2,0,0>$, speed is $\sqrt{13}$.
12. (a) If the particle meet at time t, then $2 \cos t=t-5,3=t$, and $\pi-t=2 t-6$. This system is inconsistent because the second equation gives $t=3$, but this value does not satisfy the third equation $(\pi-3 \neq 0)$.
(b) At $t=\pi$, the first particle is at $<2 \cos \pi, 3, \pi-\pi>=<-2,3,0>$. At $t=3$, the second particle is at $\langle 3-5,3,2 \cdot 3-6\rangle=<-2,3,0\rangle$. Since $3<\pi$, the second particle passes throught this point earlier.
13. $\{(x, y, z) \mid x+2 y-1 \geq 0, z>0\}$. This is the set of points above the half of the $x y$-plane given by $y \geq-x / 2+1 / 2$.
In other words, the $x y$-plane and the vertical plane given by $x+2 y-1=0$ divide the space into 4 parts. The domain of the given function is one of these four parts (the one above the $x y$-plane and containing points with large positive x - and y-coordinates).
14. The level curves are given by $y-e^{x}=k$, or $y=e^{x}+k$. Draw a few of these curves, say, for $k=0,1,-1,2,-2$. For $k=0$ we have $y=e^{x}$. For $k=1$ we have $y=e^{x}+1$ which is obtained by shifting $y=e^{x} 1$ unit upward. For $k=-1$ we have $y=e^{x}-1$ which is obtained by shifting $y=e^{x}-11$ unit downward. And so on.
15. The level surfaces are given by $x^{2}+3 y^{2}+5 z^{2}=k$, or $\frac{x^{2}}{k}+\frac{y^{2}}{k / 3}+\frac{z^{2}}{k / 5}=1$ and are ellipsoids.
