## Practice test 1

Test 1 is on Monday, October 2, from 10:00-10:50 AM. The actual test will consist of 5 problems. (We will go over the test from 10:50-11:15.)

1. Determine whether the points $A(1,0,0), B(0,1,1), C(-2,2,2)$ lie on a straight line.
2. Find an equation of the sphere with center $(4,-3,2)$ and radius 3 . What is the intersection of this sphere with the $y z$-plane?
3. Let $a=<1,2,3>$ and $b=<-3,0,1>$. Find the following:
(a) $a+b$
(b) $a \cdot b$
(c) $a \times b$
(d) the angle between $a$ and $b$
4. Find the area of the triangle whose vertices are $P(1,2,0), Q(0,1,2)$, and $R(1,0,2)$.
5. Find equations of the line
(a) through $(1,4,-2)$ and $(2,5,3)$
(b) through $(1,4,-2)$ and parallel to $\langle 2,5,3\rangle$
(c) through $(1,4,-2)$ and orthogonal to $2 x+5 y+3 z+4=0$
6. Find an equation of the plane
(a) through $(1,4,-2),(2,5,3)$, and $(0,0,1)$
(b) through $(1,4,-2)$ and parallel to $2 x+5 y+3 z+4=0$
(c) through $(1,4,-2)$ and orthogonal to $\langle 2,5,3\rangle$
(d) through $(1,4,-2)$ and containing the line $x=y-1=z+1$
7. Describe the intersections of the following, and find their coordinates or parametric equations:
(a) the lines $x=y-1=z+1$ and $x-2=2 y+1=\frac{z}{2}$
(b) the lines $x=y-1=z+1$ and $x-2=2 y+1=\frac{z-8}{2}$
(c) the line $x=y-1=z+1$ and the plane $x+4 y-2 z+3=0$
(d) the planes $x+4 y-2 z+3=0$ and $2 x+5 y+3 z+4=0$
(e) the ellipsoid $x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$ and $x z$-plane
8. (Section 12.7, problem 63) A cylindrical shell (see figure 2 on page 455) is 20 cm long, with inner radius 6 cm and outer radius 7 cm . Write inequalities that describe the shell in an appropriate coordinate system. Explain how you have positioned the coordinate system with respect to the shell.
9. Identify the surface:
(a) $x=3$
(b) $r=3$
(c) $\rho=3$
(d) $\theta=\frac{\pi}{4}$
(e) $\phi=\frac{\pi}{4}$
10. Let $r(t)=<\cos t, t^{2}, t^{4}>$.
(a) Find $r^{\prime}(t)$.
(b) Find $\int_{0}^{\pi} r(t) d t$.
(c) Is the curve given by $r(t)$ smooth?
(d) Set up (but do not evaluate) an integral for the length of this curve from $t=0$ to $t=1$.
11. Find the velocity, acceleration, and speed of a particle with position function $r(t)=<$ $2 \cos t, 3 t, 2 \sin t>$ at $t=\pi$.
12. One particle has position function $r(t)=<2 \cos t, 3, \pi-t>$ and another one has position function $r(t)=<t-5, t, 2 t-6>$.
(a) Show that these particles never meet.
(b) Show that both particles pass through the point $(-2,3,0)$. Which particle passes through this point first?
13. Find and describe the domain of $f(x, y, z)=\sqrt{x+2 y-1}+\ln (z)$.
14. Draw a countour map of the function $f(x, y)=y-e^{x}$ showing several level curves.
15. Describe the level surfaces of the function $f(x, y, z)=x^{2}+3 y^{2}+5 z^{2}$.
