Math 250

Practice test 2

Test 2 is on Monday, November 6, from 10:00 - 10:50 AM. This test is on sections 14.2-15.6. The actual test will consist of 5 problems (and one problem for extra credit). We will go over the test from 10:50 - 11:15.

1. Show that the limit $\lim_{(x,y)\to(0,0)} \frac{x(x-y)}{x^2+y^2}$ does not exist.

- 2. Let $f(x,y) = \sin x + \cos y + e^{xy}$. Find the first and second partial derivatives of f.
- 3. Let $f(x, y) = \sqrt{x + y^2}$.
 - (a) Find an equation of the tangent plane to the surface given by z = f(x, y) at (8, 1, 3).
 - (b) Find the linearization of f(x, y) at (8, 1).
- 4. Use the chain rule to find the indicated partial derivative(s) for the given function.
 - (a) $z = x \ln(x+y), x = t^2, y = t^3$; find $\frac{dz}{dt}$ (b) $z = \arctan x + y^3, x = t^4 + 2s, y = -st$; find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$ (c) $u = x^2 + y^2 - z^2, x = 5t + 1, y = e^t, z = \sin t$; $\frac{du}{dt}$ at t = 0

5. Let $f(x,y) = x\sqrt{y}$. Find the following:

- (a) $\nabla f(x,y)$,
- (b) $\nabla f(3,4)$,
- (c) the directional derivative of f at (3, 4) in the direction of the vector v = < 1, -1 >,
- (d) the maximum rate of change of f at (3, 4) and the direction in which it occurs.
- 6. Let $f(x, y) = x^3 + y^3 3(x + y)$. Find the following:
 - (a) the critical points of f,
 - (b) the local maximum and minimum values of f,
 - (c) the absolute maximum and minimum values of f on \mathbb{R}^2 ,
 - (d) the absolute maximum and minimum values of f on the circle given by $x^2 + y^2 = 1$,
 - (e) the absolute maximum and minimum values of f on the disk $\{(x, y) \mid x^2 + y^2 \le 1\}$.
- 7. A contour map is shown for a function f. Estimate the following:
 - (a) the value of $\iint_R f(x, y) dA$, where $R = [-1, 3] \times [0, 3]$,

(b) the average value of of f on R.

8. Evaluate the following integrals:

(a)
$$\int_{0}^{1} \int_{0}^{2} 3dxdy$$

(b) $\int_{0}^{6} \int_{0}^{2} (x^{2} + xy + 1)dydx$
(c) $\int_{0}^{1} \int_{-y}^{y} (x^{2} + xy + 1)dxdy$
(d) $\iint_{R} \sin(x^{2} + y^{2})dA$, where $R = \{(x, y) \mid x^{2} + y^{2} \le 9, x \ge 0, y \ge 0\}$ (hint: change to polar coordinates)

9. Find the mass and center of mass of the lamina that occupies the region

$$D = \left\{ (x, y) \mid 0 \le y \le \cos x, 0 \le x \le \frac{\pi}{2} \right\}$$

and has the density function $\rho(x,y) = x$.

10. Find the area of the part of the paraboloid $z = 4 - x^2 - y^2$ that lies above the xy-plane.