Practice test 2

Test 2 is on Monday, November 6, from 10:00-10:50 AM. This test is on sections 14.215.6. The actual test will consist of 5 problems (and one problem for extra credit). We will go over the test from 10:50-11:15.

1. Show that the limit $\lim _{(x, y) \rightarrow(0,0)} \frac{x(x-y)}{x^{2}+y^{2}}$ does not exist.
2. Let $f(x, y)=\sin x+\cos y+e^{x y}$. Find the first and second partial derivatives of f.
3. Let $f(x, y)=\sqrt{x+y^{2}}$.
(a) Find an equation of the tangent plane to the surface given by $z=f(x, y)$ at $(8,1,3)$.
(b) Find the linearization of $f(x, y)$ at $(8,1)$.
4. Use the chain rule to find the indicated partial derivative(s) for the given function.
(a) $z=x \ln (x+y), x=t^{2}, y=t^{3} ;$ find $\frac{d z}{d t}$
(b) $z=\arctan x+y^{3}, x=t^{4}+2 s, y=-s t ;$ find $\frac{\partial z}{\partial t}$ and $\frac{\partial z}{\partial s}$
(c) $u=x^{2}+y^{2}-z^{2}, x=5 t+1, y=e^{t}, z=\sin t ; \frac{d u}{d t}$ at $t=0$
5. Let $f(x, y)=x \sqrt{y}$. Find the following:
(a) $\nabla f(x, y)$,
(b) $\nabla f(3,4)$,
(c) the directional derivative of f at $(3,4)$ in the direction of the vector $v=<1,-1\rangle$,
(d) the maximum rate of change of f at $(3,4)$ and the direction in which it occurs.
6. Let $f(x, y)=x^{3}+y^{3}-3(x+y)$. Find the following:
(a) the critical points of f,
(b) the local maximum and minimum values of f,
(c) the absolute maximum and minimum values of f on \mathbb{R}^{2},
(d) the absolute maximum and minimum values of f on the circle given by $x^{2}+y^{2}=1$,
(e) the absolute maximum and minimum values of f on the disk $\left\{(x, y) \mid x^{2}+y^{2} \leq 1\right\}$.
7. A contour map is shown for a function f. Estimate the following:
(a) the value of $\iint_{R} f(x, y) d A$, where $R=[-1,3] \times[0,3]$,
(b) the average value of of f on R.

8. Evaluate the following integrals:
(a) $\int_{0}^{1} \int_{0}^{2} 3 d x d y$
(b) $\int_{0}^{6} \int_{0}^{2}\left(x^{2}+x y+1\right) d y d x$
(c) $\int_{0}^{1} \int_{-y}^{y}\left(x^{2}+x y+1\right) d x d y$
(d) $\iint_{R} \sin \left(x^{2}+y^{2}\right) d A$, where $R=\left\{(x, y) \mid x^{2}+y^{2} \leq 9, x \geq 0, y \geq 0\right\}$ (hint: change
to polar coordinates)
9. Find the mass and center of mass of the lamina that occupies the region

$$
D=\left\{(x, y) \mid 0 \leq y \leq \cos x, 0 \leq x \leq \frac{\pi}{2}\right\}
$$

and has the density function $\rho(x, y)=x$.
10. Find the area of the part of the paraboloid $z=4-x^{2}-y^{2}$ that lies above the $x y$-plane.

