Math 250

Practice final

The Final Exam is on Monday, December 11, from 10:30 AM - 12:30 PM. The exam is comprehensive, so review everything we studied in this class. The actual test will consist of 8-10 problems. A good way to study for the final would be:

- Do the (optional) Review problem set (on WeBWorK).
- Review homework assignments (both on WeBWorK and from the book, including the recommended problems). Identify areas you were (or still are) having trouble with and review those.
- Review practice tests, tests, and quizzes. If you are not sure how to do some problems, review the corresponding material.
- Prepare your notes: one letter size sheet (both sides) of notes is allowed on the final.
- Do the problems given below to check your readiness. If needed, review again.
- Answers to these problems will be available. Check yours.
- Do more problems (e.g. from the book). In fact, do as many problem as you have time to. Always check your answers.
- Don't study the night before the exam: get some rest and sleep.
- Good luck!

"Train hard, fight easy" Alexander V. Suvorov, Russian Field Marshal, 1729-1800

- 1. Describe in words the surface/region/solid in \mathbb{R}^3 represented by the equation of inequality.
 - (a) y = z
 - (b) $x^2 + y^2 = 4$
 - (c) $\rho > 9$ (spherical coordinates)
 - (d) $\theta = \pi$ (cylindrical or spherical coordinates)
 - (e) $z = 8 4x^2 4y^2$
 - (f) $r(u,v) = (1+2u)\mathbf{i} + (-u+3v)\mathbf{j} + (2+4u+5v)\mathbf{k}$
- 2. Find a vector that has the same direction as < 1, 2, 3 > but has length 6.

- 3. Let a = < 3, 4, 0 >, b = < 0, -1, 2 >. Find the following:
 - (a) $a \cdot b$,
 - (b) $a \times b$,
 - (c) the angle between a and b,
 - (d) the area of the parallelogram determined by a and b.
- 4. Find both parametric and symmetric equations of the line through the point (1, 0, -3) and parallel to the vector < 2, -4, 5 >.
- 5. Find an equation of the plane through the origin and the points (2, -4, 6) and (5, 1, 3).
- 6. Sketch the curve with the vector equation $r(t) = \langle 1 + t, 3t^2 2 \rangle$. Find r'(t). Sketch r'(1).
- 7. Find the length of the curve given by $r(t) = \mathbf{i} + t^2 \mathbf{j} + t^3 \mathbf{k}, 0 \le t \le 1$.
- 8. Find the velocity, acceleration, and speed of a particle with the position function $r(t) = <\sin t, 2\cos t >$. Sketch the path of the particle and draw the velocity and acceleration vectors for t = 0.
- 9. Let $f(x, y) = \sqrt{x + 2y}$.
 - (a) Find and sketch the domain of f.
 - (b) Sketch a contour map of f.
 - (c) Find f_x , f_y , f_{xx} , f_{yy} , and f_{xy} .
 - (d) Find ∇f .
 - (e) Find $D_u f(1,4)$ in the direction of the vector $u = \langle -1, 1 \rangle$.
 - (f) Find the tangent plane approximation of f at (1, 4).
 - (g) Find the maximum and minimum values of f on the circle $(x-1)^2 + (y-1)^2 = 1.$
- 10. Describe the domain and the level surfaces of $f(x, y, z) = x^2 + y^2 z$.

11. Show that the limit $\lim_{(x,y)\to(0,0)} \frac{6x^3y}{2x^4+y^4}$ does not exist.

- 12. Calculate the following integrals:
 - (a) $\int_{0}^{5} \int_{-1}^{3} 2 \, dx \, dy$, (b) $\iint_{D} xy \, dA$, where *D* is the triangle with vertices (1,0), (0,1), and (1,1),

- (c) $\iint_R (x+y) \, dA$, where *R* is the region that lies to the left of the *y*-axis between the circles $x^2 + y^2 = 1$ and $x^2 + y^2 = 4$,
- (d) $\int_C ye^x ds$, where C is the line segment joining (1, 2) to (4, 7), (e) $\iint_S y dS$, where S is the surface $z = \frac{2}{3}(x^{3/2} + y^{3/2}), 0 \le x \le 1, 0 \le y \le 1$.
- 13. Find the area of the part of the sphere $x^2 + y^2 + z^2 = 4$ that lies above the plane z = 1.
- 14. Find the volume of the solid enclosed by the paraboloid $x = y^2 + z^2$ and the plane x = 16.
- 15. Find the Jacobian of the transformation given by $x = u^2 v^2$, $y = u^2 + v^2$.
- 16. Sketch the vector field $\mathbf{F}(x, y) = (x + y)\mathbf{i}$.
- 17. Show that **F** is a conservative vertor field. Find a function f such that $\mathbf{F} = \nabla f$.
 - (a) $\mathbf{F} = e^y \mathbf{i} + x e^y \mathbf{j}$
 - (b) $\mathbf{F} = 2xy\mathbf{i} + (x^2 + 2yz)\mathbf{j} + y^2\mathbf{z}$
- 18. Use Green's Theorem to evaluate the line integral along the given positively oriented curve: $\int_C x^2 y^2 dx + 4xy^3 dy$, where C is the triangle with vertices (0,0), (1,3), and (0,3).
- 19. Find the curl and the divergence of the vector field $\mathbf{F} = x^2 y z \mathbf{i} + xy^2 z \mathbf{j} + xyz^2 \mathbf{z}$.
- 20. Use Stokes' Theorem to evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$, where $\mathbf{F}(x, y, z) = e^{-x}\mathbf{i} + e^x\mathbf{j} + e^z\mathbf{z}$, and C is the boundary of the part of the plane 2x + y + 2z = 2 in the first octant, oriented counterclockwise as viewed from above.