MATH 250
 Test 1 Solutions

1. Let $v=<9,5,1>$ and $u=<1,-2,1>$. Find the following:
(a) $v \cdot u$,
$v \cdot u=9 \cdot 1+5(-2)+1 \cdot 1=9-10+1=0$.
(b) the angle between v and u.
the angle is 90° because the dot product of v and u is 0 .
2. Find an equation of the plane that passes through the point $(5,4,3)$ and is parallel to the plane $x-y+z=0$.
The vector $<1,-1,1>$ is normal to the plane $x-y+z=0$, and thus is normal to the plane whose equation we want to find. Therefore an equation can be written as $1(x-5)+(-1)(y-4)+1(z-3)=0$, or $x-y+z-4=0$.
3. Find equations of the line that passes through points $(0,1,2)$ and $(1,2,4)$.

The vector from the first point to the second point is $<1-0,2-1,4-2>=<1,1,2>$. This vector is parallel to the line. Using this vector and the first point, symmetric equations of the line can be written as $\frac{x-0}{1}=\frac{y-1}{1}=\frac{z-2}{2}$, or $x=y-1=\frac{z-2}{2}$. (Parametric equations are $x=t, y=1+t, z=2+2 t$.)
4. Find and descibe the domain of $f(x, y, z)=\ln \left(1-x^{2}-y^{2}-z^{2}\right)$.

The function $\ln \left(1-x^{2}-y^{2}-z^{2}\right)$ is defined whenever $1-x^{2}-y^{2}-z^{2}>0$, i.e. $x^{2}+y^{2}+z^{2}<1$. This inequality describes the interior of the sphere with center at the origin and radius 1 , i.e. the open ball with center at the origin and radius 1.
5. Consider the curve given by $r(t)=<t^{2}, t^{3}+t^{2}, t^{3}>$.
(a) Find $r^{\prime}(t)$. $r^{\prime}(t)=<2 t, 3 t^{2}+2 t, 3 t^{2}>$.
(b) Is this curve smooth? Explain why or why not.

Since $r^{\prime}(0)=0$, the curve is not smooth at $t=0$ (but is smooth at all other points).
6. (For extra credit) Find the point on the plane $2 x+3 y+4 z+5=0$ closest to the point $(1,1,1)$.
The line joining $(1,1,1)$ and the point on the plane $2 x+3 y+4 z+5=0$ closest to $(1,1,1)$ is perpendicular to the given plane. Since the vector $\langle 2,3,4\rangle$ is normal to the plane, we can write equations of this line as $x=1+2 t, y=1+3 t, z=1+4 t$. Now let's find the intersection point of this line and the given plane. To do this, we'll substitute the above expressions for x, y, and z into the equation of the plane: $2(1+2 t)+3(1+3 t)+4(1+4 t)+5=$ 0. Simplifying this gives $29 t+14=0$. Therefore $t=-\frac{14}{29}$. The intersection point thus has coordinates $x=1+2 t=\frac{1}{29}, y=1+3 t=-\frac{13}{29}, z=1+4 t=-\frac{27}{29}$. So the point on $2 x+3 y+4 z+5=0$ closest to $(1,1,1)$ is $\left(\frac{1}{29},-\frac{13}{29},-\frac{27}{29}\right)$.

