MATH 5
 Test 1 - Solutions

1. Convert 160° to radians and draw this angle in the standard position.

Since $180^{\circ}=\pi \mathrm{rad}, 1^{\circ}=\frac{\pi}{180} \mathrm{rad}$, so $160^{\circ}=\frac{160 \pi}{180} \mathrm{rad}=\frac{8 \pi}{9} \mathrm{rad}$.

2. Convert $-\frac{2 \pi}{5}$ to degrees and draw this angle in the standard position.

Since $180^{\circ}=\pi \mathrm{rad}, 1 \mathrm{rad}=\left(\frac{180}{\pi}\right)^{\circ}$, so $-\frac{2 \pi}{5} \mathrm{rad}=-\frac{360 \pi}{5 \pi}=-72^{\circ}$.

3. Find an angle between 0° and 360° that is coterminal with the angle -250°. $-250^{\circ}+360^{\circ}=110^{\circ}$.
4. Find the reference angle of $\frac{10 \pi}{3}$.

Since $\frac{10 \pi}{3}=3 \pi+\frac{\pi}{3}$, we see from the above picture that the reference angle is $\frac{\pi}{3}$.
5. If the terminal side of angle θ in the standard position passes through the point $(0.6,0.8)$, find $\cos \theta$.

The point $(0.6,0.8)$ lies on the unit circle, so using the definition, $\cos \theta=0.6$.
6. If the terminal side of angle θ in the standard position passes through the point $(0.6,0.8)$, find $\tan \theta$.
Using the definition, $\sin \theta=0.8$, so $\tan \theta=\frac{0.8}{0.6}=\frac{4}{3}$.
7. If the terminal side of angle θ in the standard position passes through the point $(-6,3)$, find $\sin \theta$.
For $x=-6$ and $y=3, r=\sqrt{x^{2}+y^{2}}=\sqrt{36+9}=\sqrt{45}=3 \sqrt{5}$.
Then $\sin \theta=\frac{y}{r}=\frac{3}{3 \sqrt{5}}=\frac{1}{\sqrt{5}}$.
8. If θ is in quadrant III and $\sin \theta=-\frac{1}{7}$, find $\cos \theta$.

Using $\cos ^{2} \theta+\sin ^{2} \theta=1$, we have
$\cos \theta= \pm \sqrt{1-\sin ^{2} \theta}= \pm \sqrt{1-\frac{1}{49}}= \pm \sqrt{\frac{48}{49}}= \pm \frac{\sqrt{48}}{\sqrt{49}}= \pm \frac{4 \sqrt{3}}{7}$.
Since θ is in quadrant III, $\cos \theta$ is negative, so $\cos \theta=-\frac{4 \sqrt{3}}{7}$.
9. If $\csc \theta=4$, find $\sin \theta$.

Using $\csc \theta=\frac{1}{\sin \theta}$, we have $\frac{1}{\sin \theta}=4$, so $1=4 \sin \theta$, therefore $\sin \theta=\frac{1}{4}$.
10. Find the exact value of $\cos (-3 \pi)$.

Using the definition, $\cos (-3 \pi)=-1$.
11. Find the exact value of $\tan \left(\frac{2 \pi}{3}\right)$.

The angle $\frac{2 \pi}{3}$ is in quadrant II, so $\cos \left(\frac{2 \pi}{3}\right)$ is negative and $\sin \left(\frac{2 \pi}{3}\right)$ is positive. The reference angle is $\frac{\pi}{3}$, and from the triangle with sides 1 (adjacent side), $\sqrt{3}$ (opposite side), and 2 (hypotenuse) we know that $\cos \left(\frac{\pi}{3}\right)=\frac{1}{2}$ and $\sin \left(\frac{\pi}{3}\right)=\frac{\sqrt{3}}{2}$. So $\cos \left(\frac{2 \pi}{3}\right)=-\frac{1}{2}$ and $\sin \left(\frac{2 \pi}{3}\right)=\frac{\sqrt{3}}{2}$. Therefore $\tan \left(\frac{2 \pi}{3}\right)=\frac{\sin \left(\frac{2 \pi}{3}\right)}{\cos \left(\frac{2 \pi}{3}\right)}=\frac{\frac{\sqrt{3}}{2}}{-\frac{1}{2}}=-\sqrt{3}$.
12. Sketch the graph of $\sin (x-2)+1$.

Shift the graph of $\sin x 2$ units to the right and 1 unit upward:

13. Sketch the graph of $0.5 \cos (x+2 \pi)$.

Stretch the graph of $\cos x$ vertically by a factor of π (shifting by 2π units won't change it):

14. Sketch the graph of $-\tan (\pi x)$.

Reflect the graph of $\tan x$ about the x-axis and compress horizontally by a factor of π :

15. Find an equation for the curve given below.

The given curve can be obtained from the curve $y=\sin x$ by stretching it horizontally (we have to determine by which factor) and then shifting 1 unit to the left. So the equation will have the form $y=\sin (b(x+1))$ where b can be found using the period. Namely, the period of such a function is $\frac{2 \pi}{b}$, and the period of the given curve is 8 . So we have $\frac{2 \pi}{b}=8$. Then $2 \pi=8 b$, so $b=\frac{2 \pi}{8}=\frac{\pi}{4}$. Thus one possible answer is $y=\sin \left(\frac{\pi}{4}(x+1)\right)$.
Note: there are other possible correct answers here since the curve may also be obtained using another shift or using the curve $y=\cos x$. Here are some other correct answers: $y=\sin \left(\frac{\pi}{4}(x-7)\right), y=\cos \left(\frac{\pi}{4}(x-1)\right), y=\cos \left(\frac{\pi}{4}(x+7)\right)$. There are some others, too. If your answer differs from all of the above, plot a few points and check whether they are on the given curve.

