## MATH 5 Test 1 – Solutions

1. Convert  $160^{\circ}$  to radians and draw this angle in the standard position.



2. Convert  $-\frac{2\pi}{5}$  to degrees and draw this angle in the standard position.



- 3. Find an angle between 0° and 360° that is coterminal with the angle  $-250^{\circ}$ .  $-250^{\circ} + 360^{\circ} = 110^{\circ}$ .
- 4. Find the reference angle of  $\frac{10\pi}{3}$ .



Since  $\frac{10\pi}{3} = 3\pi + \frac{\pi}{3}$ , we see from the above picture that the reference angle is  $\frac{\pi}{3}$ .

5. If the terminal side of angle  $\theta$  in the standard position passes through the point (0.6, 0.8), find  $\cos \theta$ .

The point (0.6, 0.8) lies on the unit circle, so using the definition,  $\cos \theta = 0.6$ .

6. If the terminal side of angle  $\theta$  in the standard position passes through the point (0.6, 0.8), find  $\tan \theta$ .

Using the definition,  $\sin \theta = 0.8$ , so  $\tan \theta = \frac{0.8}{0.6} = \frac{4}{3}$ .

7. If the terminal side of angle  $\theta$  in the standard position passes through the point (-6, 3), find  $\sin \theta$ .

For 
$$x = -6$$
 and  $y = 3$ ,  $r = \sqrt{x^2 + y^2} = \sqrt{36 + 9} = \sqrt{45} = 3\sqrt{5}$ .  
Then  $\sin \theta = \frac{y}{r} = \frac{3}{3\sqrt{5}} = \frac{1}{\sqrt{5}}$ .

- 8. If  $\theta$  is in quadrant III and  $\sin \theta = -\frac{1}{7}$ , find  $\cos \theta$ . Using  $\cos^2 \theta + \sin^2 \theta = 1$ , we have  $\cos \theta = \pm \sqrt{1 - \sin^2 \theta} = \pm \sqrt{1 - \frac{1}{49}} = \pm \sqrt{\frac{48}{49}} = \pm \frac{\sqrt{48}}{\sqrt{49}} = \pm \frac{4\sqrt{3}}{7}$ . Since  $\theta$  is in quadrant III,  $\cos \theta$  is negative, so  $\cos \theta = -\frac{4\sqrt{3}}{7}$ .
- 9. If  $\csc \theta = 4$ , find  $\sin \theta$ .

Using  $\csc \theta = \frac{1}{\sin \theta}$ , we have  $\frac{1}{\sin \theta} = 4$ , so  $1 = 4 \sin \theta$ , therefore  $\sin \theta = \frac{1}{4}$ .

10. Find the exact value of  $\cos(-3\pi)$ .



Using the definition,  $\cos(-3\pi) = -1$ .

11. Find the exact value of  $\tan\left(\frac{2\pi}{3}\right)$ .

The angle  $\frac{2\pi}{3}$  is in quadrant II, so  $\cos\left(\frac{2\pi}{3}\right)$  is negative and  $\sin\left(\frac{2\pi}{3}\right)$  is positive. The reference angle is  $\frac{\pi}{3}$ , and from the triangle with sides 1 (adjacent side),  $\sqrt{3}$  (opposite side), and 2 (hypotenuse) we know that  $\cos\left(\frac{\pi}{3}\right) = \frac{1}{2}$  and  $\sin\left(\frac{\pi}{3}\right) = \frac{\sqrt{3}}{2}$ . So  $\cos\left(\frac{2\pi}{3}\right) = -\frac{1}{2}$  and  $\sin\left(\frac{2\pi}{3}\right) = \frac{\sqrt{3}}{2}$ . Therefore  $\tan\left(\frac{2\pi}{3}\right) = \frac{\sin\left(\frac{2\pi}{3}\right)}{\cos\left(\frac{2\pi}{3}\right)} = \frac{\sqrt{3}}{-\frac{1}{2}} = -\sqrt{3}$ .

12. Sketch the graph of  $\sin(x-2) + 1$ .

Shift the graph of  $\sin x \ 2$  units to the right and 1 unit upward:



13. Sketch the graph of 0.5 cos(x + 2π).
Stretch the graph of cos x vertically by a factor of π (shifting by 2π units won't change it):



14. Sketch the graph of  $-\tan(\pi x)$ .

Reflect the graph of  $\tan x$  about the x-axis and compress horizontally by a factor of  $\pi$ :



15. Find an equation for the curve given below.



The given curve can be obtained from the curve  $y = \sin x$  by stretching it horizontally (we have to determine by which factor) and then shifting 1 unit to the left. So the equation will have the form  $y = \sin(b(x+1))$  where b can be found using the period. Namely, the period of such a function is  $\frac{2\pi}{b}$ , and the period of the given curve is 8. So we have  $\frac{2\pi}{b} = 8$ . Then  $2\pi = 8b$ , so  $b = \frac{2\pi}{8} = \frac{\pi}{4}$ . Thus one possible answer is  $y = \sin\left(\frac{\pi}{4}(x+1)\right)$ .

Note: there are other possible correct answers here since the curve may also be obtained using another shift or using the curve  $y = \cos x$ . Here are some other correct answers:  $y = \sin\left(\frac{\pi}{4}(x-7)\right), y = \cos\left(\frac{\pi}{4}(x-1)\right), y = \cos\left(\frac{\pi}{4}(x+7)\right)$ . There are some others, too. If your answer differs from all of the above, plot a few points and check whether they are on the given curve.