Practice Final

Notes:

- This practice final and set Review (in WeBWorK) together cover all topics that may appear on the final. You are strongly encouraged to do both of these. Also, review all 3 tests, quizzes, and homework assignments (both on-line and from the book).
- If possible, please take the final exam with the section you are registered for.
- The final for the section meeting 1-1:50 is on Monday, December 12, 1:15-3:15 PM.
- The final for the section meeting 2-2:50 is on Wednesday, December 14, 3:30-5:30 PM.

However, if you have a time conflict, let me know in advance, as soon as possible.

- The exam will consist of 25 multiple choice questions. Each question is worth 4 points, for a total of 100 points. You will receive credit if and only if you submit the correct answer. Your work will not be checked.
- You will have 2 hours to complete the exam.
- The final exam counts as 20 percent of your grade.
- Bring blank scratch paper, a pencil, and an eraser. Scantron forms will be provided.

1. If the graph of $f(x)$ passes through points $(5,3),(-3,2),(3,4)$, and $(0,-3)$, then what is the value of $f(3)$?
(a) 0
(b) 2
(c) 4
(d) 5
(e) Cannot be determined (given information is not sufficient)
2. Does the point $(-4,0)$ lie on, above, or below the line $y=-\frac{1}{3} x+1$?
(a) On the line
(b) Above the line
(c) Below the line
(d) Cannot be determined (given information is not sufficient)
(e) None of the above
3. The domain of the function $f(x)=\sqrt{\frac{1-x}{1+x}}$ is the set of all real numbers x for which:
(a) $x>1$
(b) $x \geq 1$
(c) $-1<x \leq 1$
(d) $-1<x$
(e) $x \neq-1$
4. If $f(x)=\frac{1}{x^{2}}$ and $g(x)=\sqrt{x}$, then the domain of $f \circ g$ is
(a) $(-\infty, \infty)$
(b) $(0, \infty)$
(c) $[0, \infty)$
(d) $(-\infty, 0) \cup(0, \infty)$
(e) None of the above
5. Which of the following functions is neither even nor odd?
(a) $5-x^{2}$
(b) $2 x+7 x^{5}$
(c) $\sin x+4 x$
(d) $\sin x+x^{2}$
(e) $\cos x+5$
6. Jason leaves Detroit at 2:00 PM and drives at a constant speed west along I-96. He passes Ann Arbor, 40 mi from Detroit, at 2:50 PM. Express the distance (in miles) traveled in terms of the time (in hours) elapsed.
(a) $d=40(t-2)$
(b) $d=40 t$
(c) $d=1.25 t$
(d) $d=48 t$
(e) $d=\frac{4 t}{5}$
7. The graph of $f(x)=\ln x$ is shifted 3 units upward and 2 units to the right. Which of the following is an equation of the new curve?
(a) $y=\ln (x-3)+2$
(b) $y=\ln (x+3)-2$
(c) $y=\ln (x+2)+3$
(d) $y=\ln (x-2)+3$
(e) $y=\ln (x+2)-3$
8. Find the inverse function of $f(x)=.5 x-2$
(a) $f^{-1}(x)=2 x+4$
(b) $f^{-1}(x)=2 x-4$
(c) $f^{-1}(x)=1+2 x$
(d) $f^{-1}(x)=1-2 x$
(e) None of the above
9. $\lim _{x \rightarrow 2} \frac{2 x^{2}-5 x+2}{x^{2}-x-2}=$
(a) 0
(b) 1
(c) 2
(d) ∞
(e) $-\infty$
10. Evaluate $\lim _{x \rightarrow 7} \frac{\sqrt{x+2}-3}{x-7}$.
(a) 0
(b) $\frac{1}{6}$
(c) $\frac{1}{3}$
(d) 1
(e) ∞
11. The vertical and horizontal asymptotes for the function $f(x)=\frac{3-x^{2}}{x^{2}-9}$ are
(a) $x=3, x=-3, y=-1$
(b) $x=3, y=-1$
(c) $x=-1, y=3, y=-3$
(d) $x=-1, y=-3$
(e) $x=3, x=-3$
12. Find the value of k for which the function $f(x)=\left\{\begin{array}{ll}\frac{x-9}{\sqrt{x}-3} & x \neq 9 \\ k & x=9\end{array}\right.$ is continuous at $x=9:$
(a) 0
(b) -3
(c) 3
(d) 9
(e) 6
13. Which of the following intervals contains a root of $x^{3}+x-5=0$?
(a) $[-2,-1]$
(b) $[-1,0]$
(c) $[0,1]$
(d) $[1,2]$
(e) $[2,3]$
14. A particle moves along a straight line with equation of motion $s(t)=\sqrt{t+1}$. Find its average velocity over the time interval $[0,3]$.
(a) $\frac{1}{3}$
(b) $\frac{1}{\sqrt{3}}$
(c) $\frac{14}{9}$
(d) 1
(e) $-\frac{1}{12}$
15. Rewrite the function as a sum where each term is a constant times a power of x : $\left(5 x^{2}+\frac{1}{2 x^{3}}+\frac{3}{\sqrt[3]{x}}\right) \sqrt[3]{x^{7}}$
(a) $5 x^{17 / 7}-\frac{1}{2} x^{18 / 7}+3 x^{7}$
(b) $5 x^{17 / 7}+\frac{1}{2} x^{-18 / 7}+3 x^{2 / 21}$
(c) $5 x^{13 / 3}+\frac{1}{2} x^{-2 / 3}+3 x^{2}$
(d) $5 x^{13 / 3}-\frac{1}{2} x^{2 / 3}+3 x^{2}$
(e) None of the above
16. If $f(x)=(\sqrt[3]{x})^{2}$, then $\frac{d f}{d x}=$
(a) $\frac{2}{3} x^{5 / 3}$
(b) $\frac{2}{3 x^{1 / 3}}$
(c) $\frac{2}{3 x^{-1 / 3}}$
(d) $\frac{3}{5} x^{5 / 3}$
(e) $\frac{3}{2} \sqrt{x}$
17. If $f(x)=\pi^{3}+\frac{x}{\sqrt{x}}$, then $f^{\prime}(x)=$
(a) $3 \pi^{2}+\frac{1}{\frac{1}{2} x^{-1 / 2}}$
(b) $3 \pi^{2}+\frac{1}{2 \sqrt{x}}$
(c) $\frac{1}{2 \sqrt{x}}$
(d) $\frac{\sqrt{x}-x \frac{1}{2} x^{-1 / 2}}{(\sqrt{x})^{2}}$
(e) $3 \pi^{2}+\frac{\sqrt{x}-x \frac{1}{2} x^{-1 / 2}}{(\sqrt{x})^{2}}$
18. Find all values of x at which the tangent line to the curve $y=\frac{(x-3)^{4}}{x^{2}-2}$ is horizontal.
(a) $\sqrt{2}, 3$
(b) 0,3
(c) $-4,1,3$
(d) $-\sqrt{2}, \sqrt{2}$
(e) $-4,0,2$
19. If a ball is given a push so that it has an initial velocity of $2 \mathrm{~m} / \mathrm{s}$ down a certain inclined plane, then the distance it has rolled after t seconds is $s=2 t+t^{2}$. How long does it take for the velocity to reach $24 \mathrm{~m} / \mathrm{s}$?
(a) 2 seconds
(b) 4 seconds
(c) 5 seconds
(d) 11 seconds
(e) 12 seconds
20. The cost function for a certain commodity is $C(x)=84+0.16 x-0.0006 x^{2}+0.000003 x^{3}$. Find the marginal cost at the production level of $x=100$.
(a) 0.13
(b) 0.14809
(c) 7.96
(d) 85.543
(e) 97
21. Simplify the expression: $\frac{1-\sin ^{2} x}{\cos x}(\sin x \tan x+\cos x)$
(a) 1
(b) $\sin x$
(c) $\cos x$
(d) $\tan x$
(e) None of the above
22. If $y=\cos (\cot x)$, then $\frac{d y}{d x}=$
(a) $-\sin (\cot x)$
(b) $-\sin (-\csc x \cot x)$
(c) $-\sin x \cot x-\cos x \csc x \cot x$
(d) $\frac{\cot x \cos x}{\sin x}$
(e) $\frac{\sin (\cot x)}{\sin ^{2} x}$
23. If $F(x)=f(g(x)), f(1)=0, f^{\prime}(1)=5, f^{\prime}(2)=-4, g(1)=2, g^{\prime}(0)=-6$, and $g^{\prime}(1)=3$, then $F^{\prime}(1)=$
(a) -30
(b) -24
(c) -12
(d) 0
(e) 15
24. Solve the equation for $\frac{d y}{d x}: \frac{y^{3}}{y-1}\left(2 x \frac{d y}{d x}+1\right)=x(1+y) \frac{d y}{d x}+y^{3}$.
(a) $\frac{y-2}{x\left(2 y^{3}+1-y^{2}\right)}$
(b) $\frac{y^{4}-2 y^{3}}{2 x y^{3}+x-x y^{2}}$
(c) $\frac{1}{2 x y^{3}-x+x y}$
(d) $\frac{2 x y^{3}-1+y}{y^{2}-x}$
(e) None of the above
25. Use implicit differentiation to find $y^{\prime}(x)$ if $x^{2}-2 x y+y^{3}=5$.
(a) $\frac{2 y-2 x}{3 y^{2}-2 x}$
(b) 0
(c) $\frac{2}{3 y}$
(d) $x-\frac{3 y^{2}}{2}$
(e) None of the above

Answers will be posted on the course web page.

