Review - 1

Maria Nogin

THEORY

Useful formulas

$$(a+b)^2 = a^2 + 2ab + b^2, \quad (a-b)^2 = a^2 - 2ab + b^2$$

 $(a+b)(a-b) = a^2 - b^2$

Intervals

- $x \in (a, b) \iff a < x < b$ • $x \in [a, b) \iff a \le x < b$ • $x \in (a, b] \iff a \le x \le b$ • $x \in [a, b] \iff a \le x \le b$ • $x \in (a, +\infty) \iff a \le x$ • $x \in [a, +\infty) \iff a \le x$ • $x \in (-\infty, b) \iff x < b$
- $x \in (-\infty, b] \iff x \le b$

Absolute value

$$|x| = \begin{cases} x & \text{if } x \ge 0\\ -x & \text{if } x < 0 \end{cases}$$

Fractions

$$\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{ad}, \qquad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \qquad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)} = \frac{ad}{bc}, \qquad \frac{a}{b} = \frac{ac}{bc}$$

Distance formula

The distance between points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$|PQ| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}.$$

Lines

The slope of the line that passes through points $P(x_1, y_1)$ and $Q(x_2, y_2)$ is

$$m_{PQ} = \frac{y_2 - y_1}{x_2 - x_1}.$$

The slope of a horizontal line is equal to 0.

The slope of a vertical line is undefined.

An equation of the line that passes through the point $P(x_1, y_1)$ and has slope m is

 $y - y_1 = m(x - x_1)$ (point-slope equation)

To find an equation of the line that passes through points $P(x_1, y_1)$ and $Q(x_2, y_2)$, first find its slope and then use the point-slope equation.

An equation of the line that has slope m and intersects the y-axis at the point (0, b) is

y = mx + b (slope-intercept equation)

Two non-vertical lines are parallel if and only if they have the same slope. Two non-vertical lines with slopes m_1 and m_2 are perpendicular if and only if

$$m_1 \cdot m_2 = -1.$$

Circles

An equation of a circle with center at (a, b) and radius r can be written in the form

$$(x-a)^2 + (y-b)^2 = r^2.$$

Domain and range of a function

The **domain** of f(x) is the set of all values of x for which f(x) is defined. The **range** of f(x) is the set of all values of y = f(x).

Important classes of functions

- Constant: f(x) = a
- Linear: f(x) = mx + b
- Quadratic: $f(x) = ax^2 + bx + c$
- Cubic: $f(x) = ax^3 + bx^2 + cx + d$
- Polynomial: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x + a_0$
- Rational: $f(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials
- Power: $f(x) = x^n$
- Root: $f(x) = \sqrt[n]{x}$
- Trigonometric: $f(x) = \sin x$, $\cos x$, $\tan x$, ...
- Exponential: $f(x) = a^x$
- Logarithmic: $f(x) = \log_a x$

See section 1.2 for **GRAPHS** of the above classes of functions.

Laws of Exponents

- $a^{x+y} = a^x \cdot a^y$
- $a^{x-y} = \frac{a^x}{a^y}$
- $(a^x)^y = (a^y)^x = a^{xy}$

•
$$\sqrt[x]{a} = a^{1/x}$$

- $a^{-x} = \frac{1}{a^x}$
- $a^0 = 1$
- $a^1 = a$

The number e is approximately equal to 2.718281828459045. The function e^x is called the natural exponential function.

Trigonometry

$180^{\circ} = \pi$ rad	$1^{\rm O} = \frac{\pi}{180} \text{ rad}$				
$\sin^2 x + \cos^2 x = 1, \tan$	$x = \frac{\sin x}{\cos x},$	$\sec x = \frac{1}{2}$	$\frac{1}{\cos x}$,	$\csc x = \frac{1}{2}$	$\frac{1}{\sin x}$
$\sin(-x) = -\sin x,$	$\cos(-x) = 0$	$\cos x$, t	$\operatorname{an}(-x)$	$= -\tan \theta$	x
$\sin(x+2\pi) = \sin x, c$	$\cos(x+2\pi) =$	$=\cos x,$	$\tan(x +$	$(\pi) = \tan(\pi)$	n x

	x	0	$\pi/6$	$\pi/4$	$\pi/3$	$\pi/2$	π			
	$\cos x$	1	$\sqrt{3}/2$	$\sqrt{2}/2$	1/2	0	-1			
	$\sin x$	0	1/2	$\sqrt{2}/2$	$\sqrt{3}/2$	1	0			
$\arcsin x = \sin^{-1} x = y$ s.t. $\sin y = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$										
$\arccos x = \cos^{-1} x = y$ s.t. $\cos y = x$ and $0 \le y \le \pi$										

$$\arctan x = \tan^{-1} x = y$$
 s.t. $\tan y = x$ and $-\frac{\pi}{2} \le y \le \frac{\pi}{2}$

Combinations of functions

$$(f \pm g)(x) = f(x) \pm g(x), \qquad (fg)(x) = f(x)g(x), \qquad \left(\frac{f}{g}\right)(x) = \frac{f(x)}{g(x)}$$

Composition of functions

$$(f \circ g)(x) = f(g(x))$$

Certain properties of functions

A function f(x) is called **even** if f(-x) = f(x) for all x in the domain of f. The graph of an even function is symmetric about the y-axis.

A function f(x) is called **odd** if f(-x) = -f(x) for all x in the domain of f. The graph of an odd function is symmetric about the origin.

A function f(x) is called **one-to-one** if for any value of y there exists at most one value of x such that f(x) = y. Equivalently, f(x) is one-to-one if $f(x_1) = f(x_2)$ implies $x_1 = x_2$.

f(x) is not one-to-one if there exist $x_1 \neq x_2$ such that $f(x_1) = f(x_2)$.

Transformations of functions

Let a > 0 and b > 1. To obtain the graph of

- y = f(x) + a, shift the graph of y = f(x) a units upward.
- y = f(x) a, shift the graph of y = f(x) a units downward.
- y = f(x + a), shift the graph of y = f(x) a units to the left.
- y = f(x a), shift the graph of y = f(x) a units to the right.
- y = bf(x), stretch the graph of y = f(x) vertically by a factor of b.
- $y = \frac{f(x)}{b}$, compress the graph of y = f(x) vertically by a factor of b.
- y = f(bx), compress the graph of y = f(x) horizontally by a factor of b.
- $y = f\left(\frac{x}{b}\right)$, stretch the graph of y = f(x) horizontally by a factor of b.
- y = -f(x), reflect the graph of y = f(x) about the x-axis.
- y = f(-x), reflect the graph of y = f(x) about the y-axis.

Inverse functions

If $f: A \to B$ is a one-to-one function then its inverse is a function $f^{-1}: B \to A$ defined by

 $f^{-1}(y) = x$ if and only if f(x) = y.

Equivalently, f(x) and g(x) are inverses of each other if f(g(x)) = x and g(f(x)) = x for all x.

To find the inverse of a one-to-one function, use the following procedure:

- 1. Write f(x) = y.
- 2. Solve the above equation for x.
- 3. You obtain an equation of the form "x = a function of y". The function on the right is $f^{-1}(y)$.
- 4. If you wish to have the answer as a function of x rather than a function of y, replace each y in step 3 by x. You'll get $f^{-1}(x)$.

Graphs y = f(x) and $y = f^{-1}(x)$ are symmetric about the line y = x.

The **logarithmic function** $\log_a x$ is defined as the inverse of the function e^x . The function $\log_e x$ is called the natural logarithmic function and is denoted by $\ln x$.

Laws of logarithms

- $\log_a(xy) = \log_a x + \log_a b$
- $\log_a\left(\frac{x}{y}\right) = \log_a x \log_a b$
- $\log_a b \cdot \log_b c = \log_a c$

•
$$\log_a x = \frac{\ln x}{\ln a}$$

- $\log_a 1 = 0$
- $\log_a a = 1$
- $\log_a(a^x) = x$
- $a^{\log_a x} = x$
- $\ln(e^x) = x$
- $e^{\ln x} = x$