Review - 1
 THEORY

Useful formulas

$$
\begin{gathered}
(a+b)^{2}=a^{2}+2 a b+b^{2}, \quad(a-b)^{2}=a^{2}-2 a b+b^{2} \\
(a+b)(a-b)=a^{2}-b^{2}
\end{gathered}
$$

Intervals

- $x \in(a, b) \Longleftrightarrow a<x<b$
- $x \in[a, b) \Longleftrightarrow a \leq x<b$
- $x \in(a, b] \Longleftrightarrow a<x \leq b$
- $x \in[a, b] \Longleftrightarrow a \leq x \leq b$
- $x \in(a,+\infty) \Longleftrightarrow a<x$
- $x \in[a,+\infty) \Longleftrightarrow a \leq x$
- $x \in(-\infty, b) \Longleftrightarrow x<b$
- $x \in(-\infty, b] \Longleftrightarrow x \leq b$

$$
\begin{gathered}
\text { Absolute value } \\
|x|=\left\{\begin{array}{rrr}
x & \text { if } & x \geq 0 \\
-x & \text { if } & x<0
\end{array}\right.
\end{gathered}
$$

Fractions

$$
\frac{a}{b} \pm \frac{c}{d}=\frac{a d \pm b c}{a d}, \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}, \quad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c}, \quad \frac{a}{b}=\frac{a c}{b c}
$$

Distance formula

The distance between points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is

$$
|P Q|=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} .
$$

Lines

The slope of the line that passes through points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$ is

$$
m_{P Q}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

The slope of a horizontal line is equal to 0 .
The slope of a vertical line is undefined.
An equation of the line that passes through the point $P\left(x_{1}, y_{1}\right)$ and has slope m is

$$
y-y_{1}=m\left(x-x_{1}\right) \quad(\text { point-slope equation })
$$

To find an equation of the line that passes through points $P\left(x_{1}, y_{1}\right)$ and $Q\left(x_{2}, y_{2}\right)$, first find its slope and then use the point-slope equation.

An equation of the line that has slope m and intersects the y-axis at the point $(0, b)$ is

$$
y=m x+b \quad \text { (slope-intercept equation) }
$$

Two non-vertical lines are parallel if and only if they have the same slope.
Two non-vertical lines with slopes m_{1} and m_{2} are perpendicular if and only if

$$
m_{1} \cdot m_{2}=-1
$$

Circles

An equation of a circle with center at (a, b) and radius r can be written in the form

$$
(x-a)^{2}+(y-b)^{2}=r^{2} .
$$

Domain and range of a function

The domain of $f(x)$ is the set of all values of x for which $f(x)$ is defined.
The range of $f(x)$ is the set of all values of $y=f(x)$.

Important classes of functions

- Constant: $f(x)=a$
- Linear: $f(x)=m x+b$
- Quadratic: $f(x)=a x^{2}+b x+c$
- Cubic: $f(x)=a x^{3}+b x^{2}+c x+d$
- Polynomial: $f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}$
- Rational: $f(x)=\frac{p(x)}{q(x)}$ where $p(x)$ and $q(x)$ are polynomials
- Power: $f(x)=x^{n}$
- Root: $f(x)=\sqrt[n]{x}$
- Trigonometric: $f(x)=\sin x, \cos x, \tan x, \ldots$
- Exponential: $f(x)=a^{x}$
- Logarithmic: $f(x)=\log _{a} x$

See section 1.2 for GRAPHS of the above classes of functions.

Laws of Exponents

- $a^{x+y}=a^{x} \cdot a^{y}$
- $a^{x-y}=\frac{a^{x}}{a^{y}}$
- $\left(a^{x}\right)^{y}=\left(a^{y}\right)^{x}=a^{x y}$
- $\sqrt[x]{a}=a^{1 / x}$
- $a^{-x}=\frac{1}{a^{x}}$
- $a^{0}=1$
- $a^{1}=a$

The number e is approximately equal to 2.718281828459045 . The function e^{x} is called the natural exponential function.

Trigonometry

$$
\begin{array}{cc}
180^{\circ}=\pi \mathrm{rad} & 1^{\mathrm{o}}=\frac{\pi}{180} \mathrm{rad} \\
\sin ^{2} x+\cos ^{2} x=1, \quad \tan x=\frac{\sin x}{\cos x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x} \\
\sin (-x)=-\sin x, \quad \cos (-x)=\cos x, \quad \tan (-x)=-\tan x \\
\sin (x+2 \pi)=\sin x, & \cos (x+2 \pi)=\cos x, \quad \tan (x+\pi)=\tan x
\end{array}
$$

x	0	$\pi / 6$	$\pi / 4$	$\pi / 3$	$\pi / 2$	π
$\cos x$	1	$\sqrt{3} / 2$	$\sqrt{2} / 2$	$1 / 2$	0	-1
$\sin x$	0	$1 / 2$	$\sqrt{2} / 2$	$\sqrt{3} / 2$	1	0

$$
\begin{gathered}
\arcsin x=\sin ^{-1} x=y \text { s.t. } \sin y=x \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2} \\
\arccos x=\cos ^{-1} x=y \text { s.t. } \cos y=x \text { and } 0 \leq y \leq \pi \\
\arctan x=\tan ^{-1} x=y \text { s.t. } \tan y=x \text { and }-\frac{\pi}{2} \leq y \leq \frac{\pi}{2}
\end{gathered}
$$

Combinations of functions

$$
(f \pm g)(x)=f(x) \pm g(x), \quad(f g)(x)=f(x) g(x), \quad\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}
$$

Composition of functions

$$
(f \circ g)(x)=f(g(x))
$$

Certain properties of functions

A function $f(x)$ is called even if $f(-x)=f(x)$ for all x in the domain of f. The graph of an even function is symmetric about the y-axis.

A function $f(x)$ is called odd if $f(-x)=-f(x)$ for all x in the domain of f. The graph of an odd function is symmetric about the origin.

A function $f(x)$ is called one-to-one if for any value of y there exists at most one value of x such that $f(x)=y$. Equivalently, $f(x)$ is one-to-one if $f\left(x_{1}\right)=f\left(x_{2}\right)$ implies $x_{1}=x_{2}$.
$f(x)$ is not one-to-one if there exist $x_{1} \neq x_{2}$ such that $f\left(x_{1}\right)=f\left(x_{2}\right)$.

Transformations of functions

Let $a>0$ and $b>1$. To obtain the graph of

- $y=f(x)+a$, shift the graph of $y=f(x) a$ units upward.
- $y=f(x)-a$, shift the graph of $y=f(x) a$ units downward.
- $y=f(x+a)$, shift the graph of $y=f(x) a$ units to the left.
- $y=f(x-a)$, shift the graph of $y=f(x) a$ units to the right.
- $y=b f(x)$, stretch the graph of $y=f(x)$ vertically by a factor of b.
- $y=\frac{f(x)}{b}$, compress the graph of $y=f(x)$ vertically by a factor of b.
- $y=f(b x)$, compress the graph of $y=f(x)$ horizontally by a factor of b.
- $y=f\left(\frac{x}{b}\right)$, stretch the graph of $y=f(x)$ horizontally by a factor of b.
- $y=-f(x)$, reflect the graph of $y=f(x)$ about the x-axis.
- $y=f(-x)$, reflect the graph of $y=f(x)$ about the y-axis.

Inverse functions

If $f: A \rightarrow B$ is a one-to-one function then its inverse is a function $f^{-1}: B \rightarrow A$ defined by

$$
f^{-1}(y)=x \quad \text { if and only if } \quad f(x)=y
$$

Equivalently, $f(x)$ and $g(x)$ are inverses of each other if $f(g(x))=x$ and $g(f(x))=x$ for all x.

To find the inverse of a one-to-one function, use the following procedure:

1. Write $f(x)=y$.
2. Solve the above equation for x.
3. You obtain an equation of the form " $x=$ a function of y ". The function on the right is $f^{-1}(y)$.
4. If you wish to have the answer as a function of x rather than a function of y, replace each y in step 3 by x. You'll get $f^{-1}(x)$.

Graphs $y=f(x)$ and $y=f^{-1}(x)$ are symmetric about the line $y=x$.

The logarithmic function $\log _{a} x$ is defined as the inverse of the function e^{x}.
The function $\log _{e} x$ is called the natural logarithmic function and is denoted by $\ln x$.

Laws of logarithms

- $\log _{a}(x y)=\log _{a} x+\log _{a} b$
- $\log _{a}\left(\frac{x}{y}\right)=\log _{a} x-\log _{a} b$
- $\log _{a} b \cdot \log _{b} c=\log _{a} c$
- $\log _{a} x=\frac{\ln x}{\ln a}$
- $\log _{a} 1=0$
- $\log _{a} a=1$
- $\log _{a}\left(a^{x}\right)=x$
- $a^{\log _{a} x}=x$
- $\ln \left(e^{x}\right)=x$
- $e^{\ln x}=x$

