Multiple choice questions: circle the correct answer

1. Solve for x : $\log _{\frac{1}{2}} x=3$.
A. 6
B. $\frac{1}{6}$
C. 8
D. $\frac{1}{8}$
E. None of the above
(because $\left(\frac{1}{2}\right)^{3}=\frac{1}{8}$)
2. How many vertical asymptotes does the curve $y=\frac{x+1}{x(x+2)(x+3)}$ have?
A. 0
B. 1
C. 2
D. 3
E. 4
$(x=0, x=-2$, and $x=-3)$
3. $\lim _{x \rightarrow 2} \frac{5}{x-2}=$
A. 0
B. 5
C. ∞
D. $-\infty$
E. Does not exist
(because the limits from the right and from the left are not equal)
4. $\lim _{x \rightarrow-\infty} \frac{x+2}{3 x+4}=$
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. 0
E. Does not exist
(divide the numerator and denominator by x)
5. The function $f(x)=\left\{\begin{array}{ll}-x-1 & \text { if } x<-1 \\ 0 & \text { if }-1 \leq x \leq 1 \\ x & \text { if } x>1\end{array} \quad\right.$ is
A. continuous everywhere
B. continuous at 1 but discontinuous at -1
(C.) continuous at -1 but discontinuous at 1
D. continuous at all points except for 1 and -1
E. discontinuous everywhere
(because there is a break in the graph at 1 but not at -1)
6. Find the rate of change of $y=3 x+5$ at $x=4$.
A. 3
B. 4
C. 5
D. 17
E. None of the above
(the rate of change is $y^{\prime}(4)$, the slope of the graph, which is 3)
7. Find the equation of the line tangent to the curve $y=x^{2}$ at $(2,4)$.
A. $y=4 x$
B. $y=4 x-4$
C. $y=4 x+4$
D. $y=-4 x$
E. $y=-4 x-4$
(first find the slope of the tangent line: $y^{\prime}(2)$; then use $y-4=y^{\prime}(2)(x-2)$)

Regular problems: show all your work

8. Solve the following equations:
(a) $\ln (5 x-2)=3$
$e^{\ln (5 x-2)}=e^{3}$
$5 x-2=e^{3}$
$5 x=e^{3}+2$
$x=\frac{e^{3}+2}{5}$
(b) $e^{3 t+1}=100$
$\ln \left(e^{3 t+1}\right)=\ln 100$
$3 t+1=\ln 100$
$3 t=\ln 100-1$
$t=\frac{\ln 100-1}{3}$
(c) $\log _{2} t+\log _{2}(t+1)=1$
$\log _{2}(t(t+1))=1$
$2^{\log _{2}(t(t+1))}=2^{1}$
$t(t+1)=2$
$t^{2}+t-2=0$
$(t+2)(t-1)=0$
$t=-2, t=1$
Howerver, $\log _{2} t$ is undefined for negative t, therefore we disregard the root $t=-2$.
Answer: $t=1$
(d) $10^{4 x+1}=300$
$\log _{10}\left(10^{4 x+1}\right)=\log _{10} 300$
$4 x+1=\log _{10} 300$
$4 x=\log _{10} 300-1$
$x=\frac{\log _{10} 300-1}{4}$
9. Evaluate the limits:
(a) $\lim _{x \rightarrow 5}(7 x-25)=7 \cdot 5-25=10$
(b) $\lim _{x \rightarrow-1} \frac{x^{3}+x^{2}}{x^{2}+3 x+2}=\lim _{x \rightarrow-1} \frac{x^{2}(x+1)}{(x+1)(x+2)}=\lim _{x \rightarrow-1} \frac{x^{2}}{x+2}=1$
(c) $\lim _{x \rightarrow 0} \frac{3-\sqrt{9+x}}{x}=\lim _{x \rightarrow 0} \frac{(3-\sqrt{9+x})(3+\sqrt{9+x})}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{3^{2}-(\sqrt{9+x})^{2}}{x(3+\sqrt{9+x})}=$
$\lim _{x \rightarrow 0} \frac{9-(9+x)}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-x}{x(3+\sqrt{9+x})}=\lim _{x \rightarrow 0} \frac{-1}{3+\sqrt{9+x}}=-\frac{1}{6}$
(d) $\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{\text { (small pos.)(pos.) }}\right]=+\infty$
(e) $\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{\text { (small neg.)(pos.) }}\right]=-\infty$
(f) $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x^{2}-x-2}$ DNE because the limits in (d) and (e) are not equal
(g) $\lim _{x \rightarrow 0} x^{4} \cos \left(\frac{1}{x}\right)=0$ by the squeeze theorem since $-x^{4} \leq x^{4} \cos \left(\frac{1}{x}\right) \leq x^{4}$ and $\lim _{x \rightarrow 0}\left(-x^{4}\right)=\lim _{x \rightarrow 0}\left(x^{4}\right)=0$.
(h) $\lim _{x \rightarrow \infty} \frac{5 x^{3}-x-3}{4 x^{3}+3 x^{2}-3}=\lim _{x \rightarrow \infty} \frac{5-\frac{1}{x^{2}}-\frac{3}{x^{3}}}{4+\frac{3}{x}-\frac{3}{x^{3}}}=\frac{5}{4}$
(i) $\lim _{x \rightarrow-\infty} \frac{5 x^{2}-x-3}{4 x^{3}+3 x^{2}-3}=\lim _{x \rightarrow \infty} \frac{\frac{5}{x}-\frac{1}{x^{2}}-\frac{3}{x^{3}}}{4+\frac{3}{x}-\frac{3}{x^{3}}}=\frac{0}{4}=0$
(j) $\lim _{x \rightarrow \infty} \frac{5 x^{3}-x-3}{4 x^{2}+3 x-3}=\lim _{x \rightarrow \infty} \frac{5 x-\frac{1}{x}-\frac{3}{x^{2}}}{4+\frac{3}{x}-\frac{3}{x^{2}}}=\infty$
(k) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+5}}{3 x-3}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+5}}{x}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+5}}{\sqrt{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}+5}{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+\frac{5}{x^{2}}}}{3-\frac{3}{x}}=\frac{2}{3}$
(l) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5}}{3 x-3}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}+5}}{x}}{3-\frac{3}{x}}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}+5}}{-\sqrt{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{4 x^{2}+5}{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{4+\frac{5}{x^{2}}}}{3-\frac{3}{x}}=$ $-\frac{2}{3}$
(m) $\lim _{x \rightarrow \infty}\left(3-x+2 x^{2}-5 x^{3}\right)=\lim _{x \rightarrow \infty} x^{3}\left(\frac{3}{x^{3}}-\frac{1}{x^{2}}+\frac{2}{x}-5\right)=-\infty$
(n) $\lim _{x \rightarrow-\infty}\left(3-x+2 x^{2}-5 x^{3}\right)=\lim _{x \rightarrow-\infty} x^{3}\left(\frac{3}{x^{3}}-\frac{1}{x^{2}}+\frac{2}{x}-5\right)=\infty$
10. Show that the equation $x^{5}-4 x+2=0$ has at least one solution in the interval $(1,2)$.

Let $f(x)=x^{5}-4 x+2$. Then $f(x)$ is a continuous function with $f(1)=-1<0$ and $f(2)=26>0$. By the intermediate value theorem, there is a point c between 1 and 2 such that $f(c)=0$.
11. Find all values of c such that the function $f(x)$ is continuous everywhere.
(a) $f(x)=\left\{\begin{array}{rll}c x & \text { if } & x \geq 2 \\ 5-x & \text { if } & x<2\end{array}\right.$

Since linear functions are continuous everywhere, $f(x)$ is continuous at all poits except possibly at 2 . It is continuous at 2 if and only if the functions $c x$ and $5-x$ agree at 2 (that is, they have the same value at 2. The graph of $f(x)$ then has no jump at 2.) So we set the values of $c x$ and $5-x$ at 2 equal:
$c \cdot 2=5-2$
$2 c=3$
$c=\frac{3}{2}$
(b) $f(x)=\left\{\begin{array}{lll}x^{2} & \text { if } & x \leq c \\ x^{3} & \text { if } & x>c\end{array}\right.$

Since polynomial functions are continuous everywhere, $f(x)$ is continuous at all poits except possibly at c. It is continuous at c if and only if the values of x^{2} and x^{3} agree at c, i.e.
$c^{2}=c^{3}$
$c^{2}-c^{3}=0$
$c^{2}(1-c)=0$
$c=0$ or $c=1$.
12. Find the vertical and horizontal asymptotes of $f(x)=\frac{(x+2)(3 x-4)}{(x-5)(x+7)}$.

Since rational functions are continuous in their domains, $f(x)$ can have vertical asymptotes only at 5 and -7 (where it is undefined). Check the limits of $f(x)$ as x approaches 5 and -7 :
$\lim _{x \rightarrow 5^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{(\text { pos. })(\text { pos.) }}{(\text { small pos.)(pos.) }}\right]=+\infty$
$\lim _{x \rightarrow-7^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{(\text { neg. })(\text { neg. })}{(\text { neg. })(\text { small pos.) })}\right]=-\infty$
Since the limits are infinite, $f(x)$ has vertical asymptotes $x=5$ and $x=-7$.
To find the horizontal asymptotes, we find the limits at infinity and negative infinity:
$\lim _{x \rightarrow \infty} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}=\lim _{x \rightarrow \infty} \frac{\frac{(x+2)}{} \frac{(3 x-4)}{x}}{\frac{(x-5)}{x} \frac{(x+7)}{x}}=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{2}{x}\right)\left(3-\frac{4}{x}\right)}{\left(1-\frac{5}{x}\right)\left(1+\frac{7}{x}\right)}=\frac{3}{1}=3$
$\lim _{x \rightarrow-\infty} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}=\lim _{x \rightarrow-\infty} \frac{\frac{(x+2)}{x} \frac{(3 x-4)}{x}}{\frac{(x-5)}{x} \frac{(x+7)}{x}}=\lim _{x \rightarrow-\infty} \frac{\left(1+\frac{2}{x}\right)\left(3-\frac{4}{x}\right)}{\left(1-\frac{5}{x}\right)\left(1+\frac{7}{x}\right)}=\frac{3}{1}=3$
Thus $y=3$ is the only horizontal asymptotes.
13. Find the following derivatives:
(a) $f^{\prime}(1)$ if $f(x)=5$
$f^{\prime}(1)=0$ because the graph of $f(x)$ is a horizontal line, and its slope at 5 (as well as at any other point) is 0 .
(b) $f^{\prime}(2)$ if $f(x)=7 x-3$
$f^{\prime}(2)=7$ because the graph of $f(x)$ is a line with slope 7 . In particular, its slope at 2 is equal to 7 .
(c) $f^{\prime}(3)$ if $f(s)=s^{2}+5 s-6$
$f^{\prime}(3)=\lim _{h \rightarrow 0} \frac{f(3+h)-f(3)}{h}=\lim _{h \rightarrow 0} \frac{(3+h)^{2}+5(3+h)-6-18}{h}=$
$\lim _{h \rightarrow 0} \frac{9+6 h+h^{2}+15+5 h-24}{h}=\lim _{h \rightarrow 0} \frac{11 h+h^{2}}{h}=\lim _{h \rightarrow 0}(11+h)=11$
(Equivalently, could use $f^{\prime}(3)=\lim _{s \rightarrow 3} \frac{f(s)-f(3)}{s-3}$.)
(d) $f^{\prime}(4)$ if $f(t)=\sqrt{t}$
$f^{\prime}(4)=\lim _{h \rightarrow 0} \frac{f(4+h)-f(4)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{4+h}-2}{h}=\lim _{h \rightarrow 0} \frac{(\sqrt{4+h}-2)(\sqrt{4+h}+2)}{h(\sqrt{4+h}+2)}=$ $\lim _{h \rightarrow 0} \frac{(4+h)-4}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{4+h}+2)}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{4+h}+2}=\frac{1}{4}$
(Could use $f^{\prime}(4)=\lim _{t \rightarrow 4} \frac{f(t)-f(4)}{t-4}$.)
(e) $f^{\prime}(5)$ if $f(x)=\frac{2}{x}$
$f^{\prime}(5)=\lim _{x \rightarrow 5} \frac{f(x)-f(5)}{x-5}=\lim _{x \rightarrow 5} \frac{\frac{2}{x}-\frac{2}{5}}{x-5}=\lim _{x \rightarrow 5} \frac{\frac{10-2 x}{5 x}}{x-5}=\lim _{x \rightarrow 5} \frac{\frac{10-2 x}{5 x}}{\frac{x-5}{1}}=\lim _{x \rightarrow 5} \frac{10-2 x}{5 x(x-5)}=$
$\lim _{x \rightarrow 5} \frac{2(5-x)}{5 x(x-5)}=\lim _{x \rightarrow 5} \frac{-2}{5 x}=-\frac{2}{25}$
(Could use $f^{\prime}(5)=\lim _{h \rightarrow 0} \frac{f(5+h)-f(5)}{h}$.)

