Practice test 3

The actual exam will consist of 6 multiple choice questions and 6 regular problems.
You will have 50 minutes to complete the exam.

Multiple choice questions: circle the correct answer

1. Find the derivative of $\sqrt{2 x}$.
A. $\frac{2}{\sqrt{x}}$
B. $\frac{2}{\sqrt{2 x}}$
C. $\frac{1}{2 \sqrt{x}}$
D. $\frac{1}{\sqrt{2 x}}$
E. $\frac{1}{2 \sqrt{2 x}}$
2. Evaluate the limit: $\lim _{x \rightarrow 0} \frac{\sin (3 x)}{5 x}$
A. 0
B. 0.6
C. $\frac{1}{5}$
D. $\frac{5}{3}$
E. Does not exist
3. Simplify the expression: $\frac{8 x^{3} \sqrt{x}}{\left(3 x^{2}\right)^{2}+7 x^{4}}$
A. $\frac{8 \sqrt{x}}{10 x^{2}}$
B. $\frac{\sqrt{x}}{2}$
C. $\frac{1}{2 \sqrt{x}}$
D. $\frac{4}{5 \sqrt{x}}$
E. $4 \sqrt{x}$
4. The position of an object at time t is given by $s(t)=4 \sin (t)+2 \cos (t)$. Find the velocity of this object at $t=\frac{\pi}{3}$.
A. $1+\sqrt{3}$
B. $1+2 \sqrt{3}$
C. $1-2 \sqrt{3}$
D. $2+\sqrt{3}$
E. $2-\sqrt{3}$
5. Find the equation of the line tangent to the curve $y=x^{2}+4 x+4$ at $(1,9)$.
A. $y=9 x$
B. $y=6 x-15$
C. $y=6 x+3$
D. $y=2 x+1$
E. None of the above
6. If $f(3)=2, f^{\prime}(3)=4, g(3)=5$, and $g^{\prime}(3)=6$, then the derivative of $\frac{f(x)}{g(x)}$ at $x=3$ is $\left(\frac{f}{g}\right)^{\prime}(3)=$
A. 0.32
B. $2 / 3$
C. $-8 / 25$
D. 0
E. Undefined
7. If $f(x)=4^{3 x}$, find $f^{\prime}(x)$.
A. $4^{3 x}$
B. $3 \cdot 4^{3 x}$
C. $12^{3 x}$
D. $\ln (4) 4^{3 x}$
E. $3 \ln (4) 4^{3 x}$

Regular problems: show all your work

8. Differentiate the following functions:
(a) $f(x)=7 x-3$
(b) $p(s)=s^{5}-2 s^{4}+3 s^{3}-4 s^{2}+5 s-6$
(c) $f(t)=\frac{3 t^{2}-5 t+1}{\sqrt{t}}$
(d) $g(x)=x^{2}-\frac{x^{3}}{\sqrt[4]{x}}+\frac{3}{x}$
(e) $q(y)=\frac{y^{2}+y+1}{y+1}$
(f) $y=3 \sin \left(x^{5}\right)+\frac{\pi}{2}$
(g) $f(x)=\cos (4)\left(x^{3}-3 x\right)$
(h) $g(x)=\frac{x^{3}-5}{\cos (-x)}$
(i) $h(x)=\tan (x)\left(\frac{1}{\sqrt[4]{x^{3}}}+\frac{2}{x}\right)$
(j) $f(t)=5 e^{x}-8 \cdot 3^{x}+9 x^{2}$
9. Find the points where the tangent line to the graph of $f(x)=x^{5}-80 x$ is horizontal.
10. Find an equation of the tangent line to $y=\sqrt{2 x+3}$ at $(3,3)$.
11. Evaluate the limits:
(a) $\lim _{x \rightarrow 0} \frac{\sin (6 x)}{\sin (7 x)}$
(b) $\lim _{x \rightarrow 0} \frac{2 x}{\tan (4 x)}$
(c) $\lim _{x \rightarrow 0} \tan (5 x) \csc (x)$
12. Solve for $\frac{d y}{d x}: \quad 5 x\left(8 y \frac{d y}{d x}+x^{2}\right)=7 \frac{d y}{d x}-3 x y^{3}$.
13. Consider the curve given by $x^{3} y^{3}-3 x y^{3}+4 y=6$.
(a) Use implicit differentiation to find $y^{\prime}(x)$.
(b) Check that the point $(2,1)$ lies on this curve.
(c) What is the slope of the tangent line to this curve at $(2,1)$?
14. A snowball is melting (so it is decreasing). Find the rate of decrease of its volume with respect to the radius when the radius is 3 cm . (Recall that the volume of a ball is $V=\frac{4}{3} \pi r^{3}$.)
