Review - 3

THEORY

Derivatives

Definition. The derivative of $f(x)$ at a point a is

$$
f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
$$

(if this limit exists. In this case we say that $f(x)$ is differentiable at a. If the limit does not exist, then $f(x)$ is not differentiable at a.)

The derivative of $f(x)$ is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

Differentiation rules

- Sum rule: $(f(x)+g(x))^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
- Difference rule: $(f(x)-g(x))^{\prime}=f^{\prime}(x)-g^{\prime}(x)$
- Constant multiple rule: $(c f(x))^{\prime}=c f^{\prime}(x)$ for any constant c
- Product rule: $(f(x) g(x))^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- Quotient rule: $\left(\frac{f(x)}{g(x)}\right)^{\prime}=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{g^{2}(x)}$
- Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) g^{\prime}(x)$

Derivatives of some important functions

- Constant function: $(c)^{\prime}=0$
- Power function: $\left(x^{n}\right)^{\prime}=n x^{n-1}$
- Trigonometric functions: $(\sin x)^{\prime}=\cos x, \quad(\cos x)^{\prime}=-\sin x$ $(\tan x)^{\prime}=\sec ^{2} x,(\cot x)^{\prime}=-\csc x, \quad(\sec x)^{\prime}=\sec x \tan x, \quad(\csc x)^{\prime}=-\csc x \cot x$
- Exponential functions: $\left(e^{x}\right)^{\prime}=e^{x}, \quad\left(a^{x}\right)^{\prime}=\ln (a) a^{x}$

Applications of derivatives

- The derivative $f^{\prime}(a)$ is the slope of the tangent line to the curve $y=f(x)$ at $(a, f(a))$. Thus the tangent line to $y=f(x)$ at $(a, f(a))$ has equation $y-f(a)=$ $f^{\prime}(a)(x-a)$.
- The derivative $f^{\prime}(a)$ is the rate of change of $y=f(x)$ when $x=a$.
- If $s(t)$ is the position of an object at time t, then its velocity is $v(t)=s^{\prime}(t)$, and its acceleration is $a(t)=v^{\prime}(t)$.
- If $n=f(t)$ is the size of a (plant or animal) population, then $f^{\prime}(t)$ is the rate of growth of the population.
- If $C(x)$ is the cost of producing x units of a certain product, then $C^{\prime}(x)$ is the marginal cost function.

Implicit differentiation

is differentiation without solving for y. Be sure to use the chain rule when you differentiate a function of $y=y(x)$ with respect to x :

$$
(f(y))^{\prime}=(f(y(x)))^{\prime}=f^{\prime}(y(x)) \cdot y^{\prime}(x)
$$

Example.

If $\sqrt[3]{x y}=x^{2} y-7 x$ and $y(2)=4$, find $y^{\prime}(2)$.

Solution:

First rewrite the equation using $y(x)$ instead of just y :
$\sqrt[3]{x y(x)}=x^{2} y(x)-7 x$
$(x y(x))^{\frac{1}{3}}=x^{2} y(x)-7 x$
Now differentiate both sides of the equation with respect to x :
$\frac{1}{3}(x y(x))^{-2 / 3}\left(1 \cdot y(x)+x y^{\prime}(x)\right)=2 x y(x)+x^{2} y^{\prime}(x)-7$
$\frac{y(x)}{3(x y(x))^{2 / 3}}+\frac{x y^{\prime}(x)}{3(x y(x))^{2 / 3}}=2 x y(x)+x^{2} y^{\prime}(x)-7$
$\frac{x y^{\prime}(x)}{3(x y(x))^{2 / 3}}-x^{2} y^{\prime}(x)=2 x y(x)-7-\frac{y(x)}{3(x y(x))^{2 / 3}}$
$y^{\prime}(x)\left(\frac{x}{3(x y(x))^{2 / 3}}-x^{2}\right)=2 x y(x)-7-\frac{y(x)}{3(x y(x))^{2 / 3}}$
$y^{\prime}(x)=\frac{2 x y(x)-7-\frac{y(x)}{3(x y(x))^{2 / 3}}}{\left(\frac{x}{3(x y(x))^{2 / 3}}-x^{2}\right)}$
if $x=2$ and $y(2)=4, \quad y^{\prime}(2)=\frac{2 \cdot 2 \cdot 4-7-\frac{4}{3(2 \cdot 4)^{2 / 3}}}{\left(\frac{2}{3(2 \cdot 4)^{2 / 3}}-2^{2}\right)}=-\frac{52}{23}$

Trigonometry

$$
\begin{gathered}
180^{\circ}=\pi \mathrm{rad} \quad 1^{\mathrm{O}}=\frac{\pi}{180} \mathrm{rad} \quad\left(\frac{180}{\pi}\right)^{\mathrm{o}}=1 \mathrm{rad} \\
\sin ^{2} x+\cos ^{2} x=1, \quad \tan x=\frac{\sin x}{\cos x}, \quad \sec x=\frac{1}{\cos x}, \quad \csc x=\frac{1}{\sin x} \\
\sin (-x)=-\sin x, \quad \cos (-x)=\cos x \\
\sin (x+2 \pi)=\sin x, \quad \cos (x+2 \pi)=\cos x
\end{gathered}
$$

Use the chart handed out in class to find the values of $\cos x$ and $\sin x$ at some important values of x.

Laws of exponents

- $a^{b} \cdot a^{c}=a^{b+c}$
- $\frac{a^{b}}{a^{c}}=a^{b-c}$
- $\left(a^{b}\right)^{c}=\left(a^{c}\right)^{b}=a^{b c}$
- $\sqrt[b]{a}=a^{1 / b}$
- $\frac{1}{a^{b}}=a^{-b}$
- $a^{0}=1$
- $a^{1}=a$

Fractions

$$
\frac{a}{b} \pm \frac{c}{d}=\frac{a d \pm b c}{a d}, \quad \frac{a}{b} \cdot \frac{c}{d}=\frac{a c}{b d}, \quad \frac{\left(\frac{a}{b}\right)}{\left(\frac{c}{d}\right)}=\frac{a d}{b c}, \quad \frac{a}{b}=\frac{a c}{b c}
$$

