Derivatives

Definition. The derivative of $f(x)$ at a point a is

$$f'(a) = \lim_{h \to 0} \frac{f(a + h) - f(a)}{h}$$

(if this limit exists. In this case we say that $f(x)$ is differentiable at a.
If the limit does not exist, then $f(x)$ is not differentiable at a.)

The derivative of $f(x)$ is

$$f'(x) = \lim_{h \to 0} \frac{f(x + h) - f(x)}{h}$$

Differentiation rules

- Sum rule: $(f(x) + g(x))' = f'(x) + g'(x)$
- Difference rule: $(f(x) - g(x))' = f'(x) - g'(x)$
- Constant multiple rule: $(c f(x))' = c f'(x)$ for any constant c
- Product rule: $(f(x) g(x))' = f'(x) g(x) + f(x) g'(x)$
- Quotient rule: \(\left(\frac{f(x)}{g(x)} \right)' = \frac{f'(x) g(x) - f(x) g'(x)}{g^2(x)} \)
- Chain rule: $(f(g(x)))' = f'(g(x)) g'(x)$

Derivatives of some important functions

- Constant function: $(c)' = 0$
- Power function: $(x^n)' = nx^{n-1}$
- Trigonometric functions: $(\sin x)' = \cos x$, $(\cos x)' = -\sin x$
 $(\tan x)' = \sec^2 x$, $(\cot x)' = -\csc x$, $(\sec x)' = \sec x \tan x$, $(\csc x)' = -\csc x \cot x$
- Exponential functions: $(e^x)' = e^x$, $(a^x)' = \ln(a) a^x$
Applications of derivatives

- The derivative $f'(a)$ is the slope of the tangent line to the curve $y = f(x)$ at $(a, f(a))$. Thus the tangent line to $y = f(x)$ at $(a, f(a))$ has equation $y - f(a) = f'(a)(x - a)$.
- The derivative $f'(a)$ is the rate of change of $y = f(x)$ when $x = a$.
 - If $s(t)$ is the position of an object at time t, then its velocity is $v(t) = s'(t)$, and its acceleration is $a(t) = v'(t)$.
 - If $n = f(t)$ is the size of a (plant or animal) population, then $f'(t)$ is the rate of growth of the population.
 - If $C(x)$ is the cost of producing x units of a certain product, then $C'(x)$ is the marginal cost function.

Implicit differentiation

is differentiation without solving for y. Be sure to use the chain rule when you differentiate a function of $y = y(x)$ with respect to x:

$$(f(y))' = (f(y(x)))' = f'(y(x)) \cdot y'(x)$$

Example.
If $\sqrt[3]{xy} = x^2y - 7x$ and $y(2) = 4$, find $y'(2)$.

Solution:
First rewrite the equation using $y(x)$ instead of just y:

$\sqrt[3]{xy(x)} = x^2y(x) - 7x$

$(xy(x))^{\frac{1}{3}} = x^2y(x) - 7x$

Now differentiate both sides of the equation with respect to x:

$\frac{1}{3}(xy(x))^{-2/3}(1 \cdot y(x) + xy'(x)) = 2xy(x) + x^2y'(x) - 7$

$\frac{y(x)}{3(xy(x))^{2/3}} + \frac{xy'(x)}{3(xy(x))^{2/3}} = 2xy(x) + x^2y'(x) - 7$

$\frac{xy'(x)}{3(xy(x))^{2/3}} - x^2y'(x) = 2xy(x) - 7 - \frac{y(x)}{3(xy(x))^{2/3}}$

$y'(x) \left(\frac{x}{3(xy(x))^{2/3}} - x^2 \right) = 2xy(x) - 7 - \frac{y(x)}{3(xy(x))^{2/3}}$

$y'(x) = \frac{2xy(x) - 7 - \frac{y(x)}{3(xy(x))^{2/3}}}{\frac{x}{3(xy(x))^{2/3}} - x^2}$

if $x = 2$ and $y(2) = 4$, $y'(2) = \frac{2 \cdot 2 \cdot 4 - 7 - \frac{4}{3(2-4)^{2/3}}}{\frac{2}{3(2-4)^{2/3}} - 2^2} = -\frac{52}{23}$
Trigonometry

180° = π rad
1° = \frac{\pi}{180} \text{ rad} \quad \left(\frac{180}{\pi}\right)^\circ = 1 \text{ rad}

\sin^2 x + \cos^2 x = 1, \quad \tan x = \frac{\sin x}{\cos x}, \quad \sec x = \frac{1}{\cos x}, \quad \csc x = \frac{1}{\sin x}

\sin(-x) = -\sin x, \quad \cos(-x) = \cos x

\sin(x + 2\pi) = \sin x, \quad \cos(x + 2\pi) = \cos x

Use the chart handed out in class to find the values of \cos x and \sin x at some important values of x.

Laws of exponents

• \ a^b \cdot a^c = a^{b+c}

• \ a^b \div a^c = a^{b-c}

• \ (a^b)^c = (a^c)^b = a^{bc}

• \ \sqrt[n]{a} = a^{1/n}

• \ \frac{1}{a^b} = a^{-b}

• \ a^0 = 1

• \ a^1 = a

Fractions

\frac{a}{b} \pm \frac{c}{d} = \frac{ad \pm bc}{bd}, \quad \frac{a}{b} \cdot \frac{c}{d} = \frac{ac}{bd}, \quad \frac{a}{b} = \frac{ac}{bc}