MATH 75A

Test 2 - Solutions

Multiple choice questions: circle the correct answer

1. Solve for x : $\quad 2^{x-1}=\frac{1}{8}$
(A.) -2
B. $-\frac{4}{3}$
C. $\frac{4}{3}$
D. $1 \frac{1}{16}$
E. 4
2. How many horizontal asymptotes does the curve $y=\frac{x+2}{(x+1)(x+3)}$ have?
A. 0
(B.) 1
C. 2
D. 3
E. 4
3. Evaluate $\lim _{x \rightarrow \infty} \frac{2 x^{2}+7 x+3}{5 x^{2}-3 x+4}$.
A. 0
(B.) $\frac{2}{5}$
C. $\frac{3}{4}$
D. 1
E. Does not exist
4. Evaluate $\lim _{x \rightarrow-\infty} \frac{2 x^{2}+8 x-2}{7 x^{3}-2 x-4}$.
(A.) 0
B. $\frac{2}{7}$
C. $\frac{1}{2}$
D. 1
E. Does not exist
5. If $f(x)=7$, find $f^{\prime}(2)$.
A. 0
B. 2
C. 4
D. 7
E. 14
6. If $f(x)=3 x+2$, find $f^{\prime}(4)$.
A. 0
B. 2
(C. 3
D. 8
E. 14

Regular problems: show all your work

7. Evaluate the limit: $\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}$.

$$
\lim _{x \rightarrow 9} \frac{\sqrt{x}-3}{x-9}=\lim _{x \rightarrow 9} \frac{(\sqrt{x}-3)(\sqrt{x}+3)}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{x-9}{(x-9)(\sqrt{x}+3)}=\lim _{x \rightarrow 9} \frac{1}{\sqrt{x}+3}=\frac{1}{6}
$$

8. Find the vertical asymptotes of $f(x)=\frac{x^{3}-4 x}{x^{2}-3 x+2}$.

The given function is undefined when $x^{2}-3 x+2=0$, or $(x-2)(x-1)=0$, i.e. at $x=2$ and $x=1$.
Since $f(x)=\frac{x^{3}-4 x}{x^{2}-3 x+2}=\frac{x\left(x^{2}-4\right)}{(x-2)(x-1)}=\frac{x(x-2)(x+2)}{(x-2)(x-1)}=\frac{x(x+2)}{x-1}$,
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x(x+2)}{x-1}=8$ which is a finite number, therefore $x=2$ is not a vertical asymptote.
$\lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 2} \frac{x(x+2)}{x-1}=\infty$, therefore $x=1$ is a vertical asymptote.
Answer: $x=1$ is the only vertical asymptote.
9. Show that the equation $x^{3}+4 x+2=0$ has a solution in the interval $(-1,1)$.

Let $f(x)=x^{3}+4 x+2$. Then $f(-1)=-3<0$ and $f(1)=7>0$. Since f is a polynomial, it is continuous everywhere. In particular, it is continuous on $[-1,1]$. Therefore by the IVT (Intermediate Value Theorem) the function f has a root in $(-1,1)$.
10. Find all values of c such that the function $f(x)=\left\{\begin{array}{rll}c x & \text { if } & x<4 \\ x+6 & \text { if } & x \geq 4\end{array}\right.$ is continuous everywhere.

The function f is continuous everywhere except possibly at 4 since linear functions are continuous everywhere. It is continuous at 4 if and only if the functions cx and $x+6$ agree at $x=4$, i.e.
$c \cdot 4=4+6$
$4 c=10$
$c=\frac{10}{4}=2.5$
11. (a) Sketch the graph of $f(x)=\left\{\begin{array}{ll}x^{2}-1 & \text { if } x \leq-2 \\ x+3 & \text { if }-2<x \leq 1 \\ (x-2)^{2} & \text { if } x>1\end{array}\right.$.

(Note: the dotted lines and curves are shown so that it is easier to see the line and the parabolas, but they are not a part of this graph.)
(b) At which point(s) is this function discontinuous?

It is discontinuous at 1 and at -2 .
(c) At the above point(s), is $f(x)$ continuous from the right, continuous from the left, or neither?

Continuous from the left at both 1 and -2 .

