## Practice test 2 - Solutions

## Multiple choice questions: circle the correct answer

1. How many vertical asymptotes does the curve $y=\frac{x+1}{x(x+2)(x+3)}$ have?
A. 0
B. 1
C. 2
(D. 3
E. 4
$(x=0, x=-2$, and $x=-3)$
2. $\lim _{x \rightarrow 2} \frac{5}{x-2}=$
A. 0
B. 5
C. $\infty$
D. $-\infty$
(E.) Does not exist
(because the limits from the right and from the left are not equal)
3. $\lim _{x \rightarrow-\infty} \frac{x+2}{3 x+4}=$
A. 1
B. $\frac{1}{2}$
(C. $\frac{1}{3}$
D. 0
E. Does not exist
(divide the numerator and denominator by $x$ )
4. Find the rate of change of $y=3 x+5$ at $x=4$.
(A.) 3
B. 4
C. 5
D. 17
E. None of the above
(the rate of change is $y^{\prime}(4)$, the slope of the graph, which is 3 )
5. Find the derivative of $\sqrt{2 x}$.
A. $\frac{2}{\sqrt{x}}$
B. $\frac{2}{\sqrt{2 x}}$
C. $\frac{1}{2 \sqrt{x}}$
D. $\frac{1}{\sqrt{2 x}}$
E. $\frac{1}{2 \sqrt{2 x}}$
(either rewrite the function as $\sqrt{2} \sqrt{x}$ and then use the constant multiple rule, or use the chain rule; simplify your answer)
6. Simplify the expression: $\frac{8 x^{3} \sqrt{x}}{\left(3 x^{2}\right)^{2}+7 x^{4}}$
A. $\frac{8 \sqrt{x}}{10 x^{2}}$
B. $\frac{\sqrt{x}}{2}$
C. $\frac{1}{2 \sqrt{x}}$
D. $\frac{4}{5 \sqrt{x}}$
E. $4 \sqrt{x}$
(use the rules of exponents)
7. The position of an object at time $t$ is given by $s(t)=4 \sin (t)+2 \cos (t)$. Find the velocity of this object at $t=\frac{\pi}{3}$.
A. $1+\sqrt{3}$
B. $1+2 \sqrt{3}$
C. $1-2 \sqrt{3}$
D. $2+\sqrt{3}$
(E. $2-\sqrt{3}$
(the velocity is the derivative of the position function)
8. Find the equation of the line tangent to the curve $y=x^{2}+4 x+4$ at $(1,9)$.
A. $y=9 x$
B. $y=6 x-15$
C. $y=6 x+3$
D. $y=2 x+1$
E. None of the above
(first find the slope, i.e. $y^{\prime}(1)$; then use the point-slope equation of the line and simplify)

## Regular problems: show all your work

9. Evaluate the limits:
(a) $\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{(\text { small pos.) (pos.) }}\right]=+\infty$
(b) $\lim _{x \rightarrow 2^{-}} \frac{x^{3}-2}{x^{2}-x-2}=\lim _{x \rightarrow 2^{+}} \frac{x^{3}-2}{(x-2)(x+1)}\left[\frac{\text { pos. }}{(\text { small neg.) (pos.) }}\right]=-\infty$
(c) $\lim _{x \rightarrow 2} \frac{x^{3}-2}{x^{2}-x-2}$ DNE because the limits in (d) and (e) are not equal
(d) $\lim _{x \rightarrow \infty} \frac{5 x^{3}-x-3}{4 x^{3}+3 x^{2}-3}=\lim _{x \rightarrow \infty} \frac{5-\frac{1}{x^{2}}-\frac{3}{x^{3}}}{4+\frac{3}{x}-\frac{3}{x^{3}}}=\frac{5}{4}$
(e) $\lim _{x \rightarrow-\infty} \frac{5 x^{2}-x-3}{4 x^{3}+3 x^{2}-3}=\lim _{x \rightarrow \infty} \frac{\frac{5}{x}-\frac{1}{x^{2}}-\frac{3}{x^{3}}}{4+\frac{3}{x}-\frac{3}{x^{3}}}=\frac{0}{4}=0$
(f) $\lim _{x \rightarrow \infty} \frac{5 x^{3}-x-3}{4 x^{2}+3 x-3}=\lim _{x \rightarrow \infty} \frac{5 x-\frac{1}{x}-\frac{3}{x^{2}}}{4+\frac{3}{x}-\frac{3}{x^{2}}}=\infty$
(g) $\lim _{x \rightarrow \infty} \frac{\sqrt{4 x^{2}+5}}{3 x-3}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+5}}{x}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\frac{\sqrt{4 x^{2}+5}}{\sqrt{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{\frac{4 x^{2}+5}{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow \infty} \frac{\sqrt{4+\frac{5}{x^{2}}}}{3-\frac{3}{x}}=\frac{2}{3}$
(h) $\lim _{x \rightarrow-\infty} \frac{\sqrt{4 x^{2}+5}}{3 x-3}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}+5}}{x}}{3-\frac{3}{x}}=\lim _{x \rightarrow-\infty} \frac{\frac{\sqrt{4 x^{2}+5}}{-\sqrt{x^{2}}}}{3-\frac{3}{x}}=\lim _{x \rightarrow-\infty} \frac{-\sqrt{\frac{4 x^{2}+5}{x^{2}}}}{3-\frac{3}{x}}=$ $\lim _{x \rightarrow-\infty} \frac{-\sqrt{4+\frac{5}{x^{2}}}}{3-\frac{3}{x}}=-\frac{2}{3}$
(i) $\lim _{x \rightarrow \infty}\left(3-x+2 x^{2}-5 x^{3}\right)=\lim _{x \rightarrow \infty} x^{3}\left(\frac{3}{x^{3}}-\frac{1}{x^{2}}+\frac{2}{x}-5\right)=-\infty$
(j) $\lim _{x \rightarrow-\infty}\left(3-x+2 x^{2}-5 x^{3}\right)=\lim _{x \rightarrow-\infty} x^{3}\left(\frac{3}{x^{3}}-\frac{1}{x^{2}}+\frac{2}{x}-5\right)=\infty$
10. Find the vertical and horizontal asymptotes of $f(x)=\frac{(x+2)(3 x-4)}{(x-5)(x+7)}$.

Since rational functions are continuous in their domains, $f(x)$ can have vertical asymptotes only at 5 and -7 (where it is undefined). Check the limits of $f(x)$ as $x$ approaches 5 and -7 :
$\lim _{x \rightarrow 5^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{(\text { pos. })(\text { pos. })}{\text { (small pos.)(pos.) }}\right]=+\infty$
$\lim _{x \rightarrow-7^{+}} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}\left[\frac{\text { (neg.)(neg.) }}{(\text { neg.)(small pos.) }}\right]=-\infty$
Since the limits are infinite, $f(x)$ has vertical asymptotes $x=5$ and $x=-7$.
To find the horizontal asymptotes, we find the limits at infinity and negative infinity:
$\lim _{x \rightarrow \infty} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}=\lim _{x \rightarrow \infty} \frac{\frac{(x+2)}{x} \frac{(3 x-4)}{x}}{\frac{(x-5)}{x} \frac{(x+7)}{x}}=\lim _{x \rightarrow \infty} \frac{\left(1+\frac{2}{x}\right)\left(3-\frac{4}{x}\right)}{\left(1-\frac{5}{x}\right)\left(1+\frac{7}{x}\right)}=\frac{3}{1}=3$
$\lim _{x \rightarrow-\infty} \frac{(x+2)(3 x-4)}{(x-5)(x+7)}=\lim _{x \rightarrow-\infty} \frac{\frac{(x+2)}{x} \frac{(3 x-4)}{x}}{\frac{(x-5)}{x} \frac{(x+7)}{x}}=\lim _{x \rightarrow-\infty} \frac{\left(1+\frac{2}{x}\right)\left(3-\frac{4}{x}\right)}{\left(1-\frac{5}{x}\right)\left(1+\frac{7}{x}\right)}=\frac{3}{1}=3$
Thus $y=3$ is the only horizontal asymptotes.
11. Differentiate the following functions:
(a) $f(x)=5$

$$
f^{\prime}(x)=0
$$

(b) $f(x)=7 x-3$
$f^{\prime}(x)=7$
(c) $p(s)=s^{5}-2 s^{4}+3 s^{3}-4 s^{2}+5 s-6$
$p^{\prime}(s)=5 s^{4}-8 s^{3}+9 s^{2}-8 s+5$
(d) $f(t)=\sqrt{t}$
$f^{\prime}(t)=\frac{1}{2 \sqrt{t}}$
(e) $f(x)=\frac{2}{x}$

$$
f^{\prime}(x)=-\frac{2}{x^{2}}
$$

(f) $f(t)=\frac{3 t^{2}-5 t+1}{\sqrt{t}}$
$f(t)=3 t^{1.5}-5 t^{0.5}+t^{-0.5}$
$f^{\prime}(t)=4.5 t^{0.5}-2.5 t^{-0.5}-0.5 t^{-1.5}=4.5 \sqrt{t}-\frac{2.5}{\sqrt{t}}-\frac{1}{2 t^{1.5}}$
(g) $g(x)=x^{2}-\frac{x^{3}}{\sqrt[4]{x}}+\frac{3}{x}$

$$
g(x)=x^{2}-x^{11 / 4}+3 x^{-1}
$$

$$
g^{\prime}(x)=2 x-\frac{11}{4} x^{7 / 4}-3 x^{-2}
$$

(h) $q(y)=\frac{y^{2}+y+1}{y+1}$

$$
q^{\prime}(y)=\frac{(2 y+1)(y+1)-\left(y^{2}+y+1\right)(1)}{(y+1)^{2}}=\frac{y^{2}+2 y}{(y+1)^{2}}
$$

(i) $y=3 \sin \left(x^{5}\right)+\frac{\pi}{2}$
$y^{\prime}=3 \cos \left(x^{5}\right) \cdot 5 x^{4}=15 x^{4} \cos \left(x^{5}\right)$
(j) $f(x)=\cos (4)\left(x^{3}-3 x\right)$

$$
f^{\prime}(x)=\cos (4)\left(3 x^{2}-3\right)
$$

(k) $g(x)=\frac{x^{3}-5}{\cos (-x)}$

$$
g^{\prime}(x)=\frac{3 x^{2} \cos x+\left(x^{3}-5\right) \sin x}{\cos ^{2} x}
$$

(l) $h(x)=\tan (x)\left(\frac{1}{\sqrt[4]{x^{3}}}+\frac{2}{x}\right)$

$$
h^{\prime}(x)=\sec ^{2}(x)\left(\frac{1}{\sqrt[4]{x^{3}}}+\frac{2}{x}\right)+\tan (x)\left(-\frac{3}{4} x^{-\frac{7}{4}}-\frac{2}{x^{2}}\right)
$$

12. Find the points where the tangent line to the graph of $f(x)=x^{5}-80 x$ is horizontal. The tangent line is horizontal when $f^{\prime}(x)=0$.
$f^{\prime}(x)=5 x^{4}-80=0$
$5\left(x^{4}-16\right)=0$
$5\left(x^{2}-4\right)\left(x^{2}+4\right)=0$
$5(x-2)(x+2)\left(x^{2}+4\right)=0$
$x=2$ and $x=-2$
Thus the tangent line is horizontal at $(2,-128)$ and $(-2,128)$.
13. Find an equation of the tangent line to $y=\sqrt{2 x+3}$ at $(3,3)$.

The slope of the tangent line is equal to the derivative at 3 .
$y^{\prime}=\frac{1}{2 \sqrt{2 x+3}} \cdot 2=\frac{1}{\sqrt{2 x+3}}$.
$y^{\prime}(3)=\frac{1}{3}$
$y-3=\frac{1}{3}(x-3)$
$y=\frac{1}{3} x+2$.

