Notes:

- This practice final and set Review (in WeBWorK) together cover all topics that may appear on the final. You are strongly encouraged to do both of these. Also, review all 3 tests, quizzes, and homework assignments (both on-line and from the book).
- The exam will consist of 25 multiple choice questions. Each question is worth 4 points, for a total of 100 points. You will receive credit if and only if you submit the correct answer. Your work will not be checked.
- You will have 2 hours to complete the exam.
- The final exam counts as 20 percent of your grade.
- Bring blank scratch paper, a pencil, and an eraser. Scantron forms will be provided.
- 1. If the graph of f(x) passes through points (5,3), (-3,2), (3,4), and (0,-3), then what is the value of f(3)?
 - (a) 0
 - (b) 2
 - (c) 4
 - (d) 5
 - (e) Cannot be determined (given information is not sufficient)
- 2. Does the point (-4,0) lie on, above, or below the line $y=-\frac{1}{3}x+1$?
 - (a) On the line
 - (b) Above the line
 - (c) Below the line
 - (d) Cannot be determined (given information is not sufficient)
 - (e) None of the above

- 3. The domain of the function $f(x) = \sqrt{\frac{1-x}{1+x}}$ is the set of all real numbers x for which:
 - (a) x > 1
 - (b) $x \ge 1$
 - (c) $-1 < x \le 1$
 - (d) -1 < x
 - (e) $x \neq -1$
- 4. If $f(x) = \frac{1}{x^2}$ and $g(x) = \sqrt{x}$, then the domain of $f \circ g$ is
 - (a) $(-\infty, \infty)$
 - (b) $(0, \infty)$
 - (c) $[0, \infty)$
 - (d) $(-\infty, 0) \cup (0, \infty)$
 - (e) None of the above
- 5. Which of the following functions is neither even nor odd?
 - (a) $5 x^2$
 - (b) $2x + 7x^5$
 - (c) $\sin x + 4x$
 - (d) $\sin x + x^2$
 - (e) $\cos x + 5$
- 6. Jason leaves Detroit at 2:00 PM and drives at a constant speed west along I-96. He passes Ann Arbor, 40 mi from Detroit, at 2:50 PM. Express the distance (in miles) traveled in terms of the time (in hours) elapsed.
 - (a) d = 40(t-2)
 - (b) d = 40t
 - (c) d = 1.25t
 - (d) d = 48t
 - (e) $d = \frac{4t}{5}$
- 7. The graph of $f(x) = \ln x$ is shifted 3 units upward and 2 units to the right. Which of the following is an equation of the new curve?
 - (a) $y = \ln(x 3) + 2$
 - (b) $y = \ln(x+3) 2$
 - (c) $y = \ln(x+2) + 3$
 - (d) $y = \ln(x-2) + 3$
 - (e) $y = \ln(x+2) 3$

- 8. Find the inverse function of f(x) = .5x 2
 - (a) $f^{-1}(x) = 2x + 4$
 - (b) $f^{-1}(x) = 2x 4$
 - (c) $f^{-1}(x) = 1 + 2x$
 - (d) $f^{-1}(x) = 1 2x$
 - (e) None of the above
- 9. $\lim_{x \to 2} \frac{2x^2 5x + 2}{x^2 x 2} =$
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) ∞
 - (e) $-\infty$
- 10. Evaluate $\lim_{x\to 7} \frac{\sqrt{x+2}-3}{x-7}$.
 - (a) 0
 - (b) $\frac{1}{6}$
 - (c) $\frac{1}{3}$
 - (d) 1
 - (e) ∞
- 11. The vertical and horizontal asymptotes for the function $f(x) = \frac{3-x^2}{x^2-9}$ are
 - (a) x = 3, x = -3, y = -1
 - (b) x = 3, y = -1
 - (c) x = -1, y = 3, y = -3
 - (d) x = -1, y = -3
 - (e) x = 3, x = -3
- 12. Find the value of k for which the function $f(x) = \begin{cases} \frac{x-9}{\sqrt{x}-3} & x \neq 9 \\ k & x = 9 \end{cases}$ is continuous at
 - x = 9:
 - (a) 0
 - (b) -3
 - (c) 3
 - (d) 9
 - (e) 6

- 13. Which of the following intervals contains a root of $x^3 + x 5 = 0$?
 - (a) [-2, -1]
 - (b) [-1, 0]
 - (c) [0,1]
 - (d) [1,2]
 - (e) [2,3]
- 14. A particle moves along a straight line with equation of motion $s(t) = \sqrt{t+1}$. Find its average velocity over the time interval [0, 3].
 - (a) $\frac{1}{3}$
 - (b) $\frac{1}{\sqrt{3}}$
 - (c) $\frac{14}{9}$
 - (d) 1
 - (e) $-\frac{1}{12}$
- 15. Rewrite the function as a sum where each term is a constant times a power of x: $(5x^2 + \frac{1}{2x^3} + \frac{3}{\sqrt[3]{x}})\sqrt[3]{x^7}$

$$(5x^2 + \frac{1}{2x^3} + \frac{3}{\sqrt[3]{x}})\sqrt[3]{x^5}$$

- (a) $5x^{17/7} \frac{1}{2}x^{18/7} + 3x^7$
- (b) $5x^{17/7} + \frac{1}{2}x^{-18/7} + 3x^{2/21}$
- (c) $5x^{13/3} + \frac{1}{2}x^{-2/3} + 3x^2$
- (d) $5x^{13/3} \frac{1}{2}x^{2/3} + 3x^2$
- (e) None of the above
- 16. If $f(x) = (\sqrt[3]{x})^2$, then $\frac{df}{dx} =$
 - (a) $\frac{2}{3}x^{5/3}$
 - (b) $\frac{2}{3x^{1/3}}$
 - (c) $\frac{2}{3x^{-1/3}}$
 - (d) $\frac{3}{5}x^{5/3}$
 - (e) $\frac{3}{2}\sqrt{x}$

- 17. If $f(x) = \pi^3 + \frac{x}{\sqrt{x}}$, then f'(x) =
 - (a) $3\pi^2 + \frac{1}{\frac{1}{2}x^{-1/2}}$
 - (b) $3\pi^2 + \frac{1}{2\sqrt{x}}$
 - (c) $\frac{1}{2\sqrt{x}}$
 - (d) $\frac{\sqrt{x} x\frac{1}{2}x^{-1/2}}{(\sqrt{x})^2}$
 - (e) $3\pi^2 + \frac{\sqrt{x} x\frac{1}{2}x^{-1/2}}{(\sqrt{x})^2}$
- 18. Find all values of x at which the tangent line to the curve $y = \frac{(x-3)^4}{x^2-2}$ is horizontal.
 - (a) $\sqrt{2}$, 3
 - (b) 0, 3
 - (c) -4, 1, 3
 - (d) $-\sqrt{2}, \sqrt{2}$
 - (e) -4, 0, 2
- 19. If a ball is given a push so that it has an initial velocity of 2 m/s down a certain inclined plane, then the distance it has rolled after t seconds is $s = 2t + t^2$. How long does it take for the velocity to reach 24 m/s?
 - (a) 2 seconds
 - (b) 4 seconds
 - (c) 5 seconds
 - (d) 11 seconds
 - (e) 12 seconds
- 20. Simplify the expression: $\frac{1-\sin^2 x}{\cos x}(\sin x \tan x + \cos x)$
 - (a) 1
 - (b) $\sin x$
 - (c) $\cos x$
 - (d) $\tan x$
 - (e) None of the above

- 21. If $y = \cos(\cot x)$, then $\frac{dy}{dx} =$
 - (a) $-\sin(\cot x)$
 - (b) $-\sin(-\csc x \cot x)$
 - (c) $-\sin x \cot x \cos x \csc x \cot x$
 - (d) $\frac{\cot x \cos x}{\sin x}$
 - (e) $\frac{\sin(\cot x)}{\sin^2 x}$
- 22. If F(x) = f(g(x)), f(1) = 0, f'(1) = 5, f'(2) = -4, g(1) = 2, g'(0) = -6, and g'(1) = 3, then F'(1) =
 - (a) -30
 - (b) -24
 - (c) -12
 - (d) 0
 - (e) 15
- 23. Evaluate $\lim_{x\to-\infty} e^x$.
 - (a) 0
 - (b) 1
 - (c) ∞
 - (d) $-\infty$
 - (e) Does not exist
- 24. If $f(x) = \frac{2^x}{\ln 2}$, find f'(2).
 - (a) 0
 - (b) 1
 - (c) 2
 - (d) 4
 - (e) 8
- 25. Solve $\log_4 x + \log_4 2 = 3$.
 - (a) 16
 - (b) 24
 - (c) 32
 - (d) 62
 - (e) 66

Answers are posted on the course web page.